Name:__________________

CSE 544 --- Final Exam

June 10, 2004

8:30pm – 10am

Time: 1h50’

Points: 100

This is an open book exam

1. [20points] Conceptual design and functional dependencies.

a. [5points] We say a set of attributes X is closed (with respect to a given set of functional dependencies) if X+=X. For each of the statements below, indicate whether they are true of false.

i. If X and Y are closed, then X (Y is closed.

ii. If X and Y are closed, then X (Y is closed.

b. [5points] Consider a relation with schema R(A,B,C,D) and an unknown set of functional dependencies. For each of the statements below, give a set of functional for which that statement holds, or say that no such set exists.

i. [5 points] All sets of attributes are closed.

ii. [5 points] The only closed sets are {} and {A,B,C,D}.

iii. The only closed sets are {}, {A,B}, {B,C}, and {A,B,C,D}

iv. The only closed sets are {}, {A}, {B}, {C}, {D}, and {A, B, C, D}.

v. [5 points] The only closed sets are {}, {A,B}, and {A,B,C,D}.

c. [5 points] Consider the relational schema ABCD, and the following functional dependencies: AB(C, B(D, C(A. Normalize the schema in BCNF

d. [5 points] Consider the following table. Indicate which of the following functional dependencies hold. You only have to indicate ‘yes’ or ‘no’.

	Product
	Department
	Customer

	P111
	D222
	C333

	P111
	D222
	C555

	P111
	D444
	C666

	P222
	D333
	C555

Department (Product

Customer (Department

Department (Customer

Product, Department (Customer

Department, Customer (Product
2. [20 points] An insurance company maintains a database with the following schema:

 Property(property, city)
 Policy(pid, premium, property, agent)
 Claim(cid, pid, amount, year)

Here premium refers to the annual premium (what the client pays annually the insurance company) and is the same every year; amount represents a one time payment made by the insurance company to the client as a result of a claim; there can be several claims during one year for the same policy.

a. [4 points] An agent processes the claim with cid=03492, which is already in the Claim table. The agent would like to find out if there were other claims for the same property submitted during the same year. Write a SQL query to find this out: your query should return all cid’s of those other claims.

b. [8 points] Write a SQL query that returns for each policy the years when the total amount on all claims in that year exceeded the annual premium for that policy. Your query should return a set of pid, year pairs.

c. [8 points] Consider the pairs of queries Q1, Q2 below. For each pair, indicate whether (A) the two queries are equivalent, or (B) Q1 is contained in Q2, but Q2 is not contained in Q1, or (C) Q2 is contained in Q1, but Q1 is not contained in Q2 or (D) none of the above. You only have to choose an answer, and are not required to provide any proof.

For example, if Q1=Select distinct year from Claim where amount > 100 and Q2 = select year from Claim where amount > 50, then you would answer (B).
i. [2 points]

Q1 = Select Distinct P.pid
 From Policy P, Claim C
 Where P.pid = C.pid and C.amount = 300

Q2 = Select Distinct P.pid
 From Policy P, Claim C1, Claim C2
 Where P.pid = C1.pid and P.pid = C2.pid and
 C1.amount > 100 and C2.amount < 2000

(A) Q1, Q2 are equivalent

(B) Q1 (Q2

(C) Q1 (Q2

(D) none of the above

ii. [2 points]

Q1= Select Distinct A.name
 From Property A, Policy P, Claim C
 Where A.propety=P.property and
 P.pid=C.pid and C.amount > 5000

Q2= Select Distinct A.name
 From Property A, Policy P, Claim C1, ClaimC2
 Where A.property=P.property and
 P.pid=C1.pid and C1.amount=10000 and
 P.pid=C2.pid and C2.amount < 300

(A) Q1, Q2 are equivalent

(B) Q1 (Q2

(C) Q1 (Q2

(D) none of the above

iii. [2 points]

Q1= Select Distinct A.name
 From Property A, Policy P, Claim C1, ClaimC2
 Where A.property=P.property and
 P.pid=C1.pid and C1.year=1980 and
 P.pid=C2.pid and C2.year=2002

Q2= Select Distinct A.name
 From Property A, Policy P1,Policy P2, Claim C1, ClaimC2
 Where A.property=P1.property and
 P1.pid=C1.pid and C1.year=1980 and
 A.property=P2.property and
 P2.pid=C2.pid and C2.year=2002

(A) Q1, Q2 are equivalent

(B) Q1 (Q2

(C) Q1 (Q2

(D) none of the above

iv. [2 points]

Q1= Select Distinct P2.pid
 From Property A1, Policy P1, Policy P2
 Where P1.agent=’John Smith’ and
 A1.city = ‘Seattle’ and
 A1.property=P1.property and
 A1.property=P2.property

Q2= Select Distinct P2.pid
 From Property A1, Property A2, Policy P1, Policy P2, Policy P3
 Where P1.agent=’John Smith’ and
 A1.city = ‘Seattle’ and
 A1.property=P1.property and
 A1.property=P2.property and
 P2.agent=P3.agent and
 A2.property=P3.property

(A) Q1, Q2 are equivalent

(B) Q1 (Q2

(C) Q1 (Q2

(D) none of the above

3. [20points] XML
Consider an XML document describing colleges and departments at a university. Each college has a name, a dean, and a set of departments. Each department has a name, a chair, and a list of students that are registered in that department. An example is:

<university>
 <college>
 <name> Engineering </name>
 <dean> Denton </name>
 <department>
 <name> Computer Science </name>
 <chair> Notkin </chair>
 <student> John Reader </student>
 <student> Joe Writer </student>

 </department>
 <department>
 <name> Electrical Engineering </name>

 </department>

 </college>
 <college> (another college)</college>

</university>

a. [5points] Write an Xpath expression that returns all students in the Computer Science Department

b. [10 points] Write an XQuery expression that returns for each student the number of colleges in which they appear.

c. [5 points] Design a relational schema that can represent the same data. Indicate the keys and the foreign keys in that schema. You need to turn in the relation names, their attributes with the key underlined, and to write separately whenever there is a foreign key.

4. [20 points] Consider two tables R(A,B,C,V) and S(D,E,F) and the following SQL query:

 Select S.F, sum(R.V)
 From R, S
 Where R.B =’1234’ and R.C= S.D and S.E=’5678’
 Group by S.F

We have clustered indexes on R.A and S.D, and unclustered indexes on R.B and S.E. We assume that both tables R and S are very large and do not fit in main memory. Consider the following three logical plans:

 P1 = (F,sum(V) ((B=1234 (R)) JoinC=D ((E=5678(S))
 P2 = (F,sum(V) ((E=5678 ((B=1234(R) JoinC=D S))
 P3 = (F,sum(V) ((E=5678 ((B=1234 (R JoinC=D S)))

Notice that the order of the join arguments matters. We only consider in this problems plans in which R occurs on the left and S on the right.

a. [4 points] Indicate for which logical plans you can use an index join. Recall that an index join uses the index on the right operand.

b. [4 points] Assume that all selections applied directly to base tables are implemented as index lookups. Indicate for which logical plans you can use merge join without having to create the initial runs for the right argument. Recall that a merge join normally takes two steps: initial run formations for both left and right arguments, and the actual merge-join. Here we are interested only in physical plans that avoid the initial run formation for the right operand. No additional assumptions should be made about the index.

c. [4 points] If we decide to implement the join operator as a partitioned hash join, indicate in which of the three logical plans the join operator is guaranteed to perform at most as many page I/Os as any of the two other plans.

d. [4 points] Consider the logical plan P2. When is an index join guaranteed to perform fewer page I/O’s than a hash-join (assuming that a main memory hash join is possible) ?

i. All tuples in R satisfy R.B=’1234’.
 YES NO

ii. There exists only one tuple in R satisfying R.B=’1234’
 YES NO

e. [4 points] Assume B(R)=B(S)=10000, M=102, all tuples in R satisfy R.B=’1234’ and all tuples in S satisfy S.E=’5678’ (hence V(R,B)=V(S,E)=1)., and V(R,C)=V(S,F)=100. Notice that none of the logical plans can be implemented in main memory only, because the join is over two big tables. Find a new logical plan which can be executed entirely in main memory, expect for reading from the tables R and S. You only have to write the logical plan. We assume that no record is larger than a page.

5. [20 points] Consider the following relational schema:

Company(name, city),
Product(pid, manufacturer), manufacturer is a foreign key in Company
Order(oid, city), city is the shipping address for the order
OrderItem(oid, pid) says which products have been placed on each order

Write First Order Logic queries to compute the following:

a. [5 points] All products manufactured in Seattle. This query returns a set of pid’s.

b. [5 points] All products that have been shipped at least once to the same city where they were manufactured. This query returns a set of pid’s.

c. [5 points] All products that have been shipped only to the cities where they have been manufactured. This query returns a set of pid’s.

d. [5 points] All companies that manufacture only products that have been shipped only to the city where they have been manufactured. This query returns a set of name’s.
