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What determines the convergence rate?
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Neural Tangent Kernel



Fully-Connect NTK



Pairwise Comparisons



Graph Neural Network



Graph Neural Tangent Kernel

Method COLLAB IMDB-B IMDB-M PTC

GNN
GCN 79% 74% 51% 64%
GIN 80% 75% 52% 65%

GK
WL 79% 74% 51% 60%
GNTK 84% 77% 53% 68%



What are left open?



Deep Learning 
Generalization



Measure of Generalization
Generalization: difference in performance on train vs. test.  

 

Assumption  
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∑
i=1

ℓ( f(xi), yi) − 𝔼(x,y)∼𝒟[ℓ( f(x), y)]

(xi, yi) i . i . d . ∼ 𝒟



Problems with the theoretical idealization
Data is not identically distributed: 

• Images (Imagenet) are scraped in slightly different ways 

• Data has systematic bias (e.g., patients are tested based on 
symptoms they exhibit) 

• Data is result of interaction (reinforcement learning) 

• Domain / distribution shift



Meta Theorem of Generalization

Meta theorem of generalization: with probability  over the 
choice of a training set of size , we have  

 

Some measures of complexity: 
• (Log) number of elements  
• VC (Vapnik-Chervonenkis) dimension 
• Rademacher complexity 
• PAC-Bayes 
• …
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ℓ( f(xi), yi) − 𝔼(x,y)∼D [ℓ( f(x), y)] = O ( Complexity(ℱ) + log(1/δ)
n )
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Classical view of generalization
Decoupled view of generalization and optimization: 

•
Optimization: find a global minimum:  

• Generalization: how well does the global optimizer generalize 

Practical implications: to have a good generalization, make 
sure  is not too “complex”. 
Strategies: 
• Direct capacity control: bound the size of the network / 

amount of connections, clip the weights, etc. 
• Regularization: add a penalty term for “complex” predictors: 

weight decay (  norm), dropout, etc.
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Techniques for 
Improving Generalization



Weight Decay

L2 regularization:  

Implementation:  
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θ ← (1 − ηλ)θ − η∇f(θ)
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Intuition: randomly cut off some connections and neurons. 

Training: for each input, at each iteration, randomly “turn off” 
each neuron with a probability  
• Change a neuron to 0 by sampling a Bernoulli variable. 
• Gradient only propogatd from non-zero neurons. 

1 − α

Dropout



Dropout changes the scale of the output neuron: 
•  
•  

Test time:  to match the scale 

y = Dropout(σ(WX))
𝔼[y] = α𝔼[σ(Wx)]

y = ασ(Wx)

Dropout



• Dropout forces the neural network to learn redundant patterns. 
• Dropout can be viewed as an implicit L2 regularizer (Wager, 

Wang, Liang ’13). 

Understanding Dropout



• Continue training may lead to overfitting. 
• Track performance on a held-out validation set. 
• Theory: for linear models, equivalent to L2 regularization. 

Early Stopping View of iterations as

a hyperparameter
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Data Augmentation
Depend on data types. 

Computer vision: rotation, stretching, flipping, etc

data centric
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Mixup data augmentation

•  

•  

•

̂x = λxi + (1 − λ)xj
̂y = λyi + (1 − λ)yj

λ ∼ Beta(0.2)

Xi Yi
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Data Augmentation
Depend on data types. 

Natural language processing: 
• Synonym replacement 

• This article will focus on summarizing data augmentation in 
NLP. 

• This write-up will focus on summarizing data augmentation in 
NLP. 

• Back translation: translate the text data to some language and 
then translate back 
• I have no time. -> ౯ဌํ෸ᳵ. -> I do not have time.



Learning rate scheduling
Start with large learning rate. After some epochs, use small 
learning rate. 

Learning rate schedule
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Learning rate scheduling
Start with large learning rate. After some epochs, use small 
learning rate. 
Theory: 
• Linear model / Kernel: large learning rate first learns 

eigenvectors with large eigenvalues (Nakkiran, ’20).  
• Representation learning (Li et al., ‘19)

Train Validation

warm cos small



Normalizations

• Batch normalization (Ioffe & Szegedy, ’15) 

• Layer normalization (Ba, Kiros, Hinton, ’16) 

• Weight normalization (Salimans, Kingma, ’16) 

• Instant normalization (Ulyanov, Vedaldi, Lempitsky, ’16) 

• Group normalization (Wu & He, ’18) 

• …


