
Clarke Differential

 



Subdifferential and Subgradient

Definition: Given , for every , the subdifferential set 
is defined as 

. The 
elements in the subdifferential set are subgradients.

f : ℝd → ℝ x

∂s f(x) ≜ {s ∈ ℝd : ∀x′ ∈ ℝd, f(x′ ) ≥ f(x) + s⊤(x′ − x)}
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Subdifferential and Subgradient

Definition: Given , for every , the subdifferential set 
is defined as 

. The 
elements in the subdifferential set are subgradients.

f : ℝd → ℝ x

∂s f(x) ≜ {s ∈ ℝd : ∀x′ ∈ ℝd, f(x′ ) ≥ f(x) + s⊤(x′ − x)}

If f is convex 2sfix exists everywhere

If f
is convex differentiable 014

I rsF sot.ly

Off



Subdifferential is not enough

Definition: Given , for every , the subdifferential set 
is defined as 

. The 
elements in the subdifferential set are subgradients.

f : ℝd → ℝ x

∂s f(x) ≜ {s ∈ ℝd : ∀x′ ∈ ℝd, f(x′ ) ≥ f(x) + s⊤(x′ − x)}
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Clarke Differential

Definition: Given , for every , the Clark differential 
is defined as 

. 
The elements in the subdifferential set are subgradients.

f : ℝd → ℝ x

∂f(x) ≜ conv ({s ∈ ℝd : ∃{xi}∞
i=1 → x, {∇f(xi)}∞

i=1 → s})
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When does Clarke differential exists

Definition (Locally Lipschitz):  is locally Lipchitz if 
, there exists a neighborhood  of , such that    is 

Lipchitz in . 

f : ℝd → ℝ
∀x ∈ ℝd S x f
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Positive Homogeneity

Definition:  is positive homogeneous of degree  if 
 for any . 

f : ℝd → ℝ L
f(αx) = αLf(x) α ≥ 0
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Positive Homogeneity

Multi layer LeLU
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Positive Homogeneity
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Positive Homogeneity and Clark Differential

Lemma: Suppose  is Locally Lipschitz and 
-positively homogeneous. For any  and , we 
have .  

f : ℝd → ℝ L
x ∈ ℝd s ∈ ∂f(x)

⟨s, x⟩ = Lf(x)
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Norm Preservation
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Gradient flow and gradient inclusion

Discrete-time dynamics can be complex. Let’s use continuous-
time dynamics to simplify: 

Gradient flow:  

Gradient inclusion: 

xt+1 = xt − η∇f(xt) ⇒ x(t)
dt

= − ∇f(x(t))
dx(t)

dt
∈ ∂f(x(t))



Norm preservation by gradient inclusion

Theorem (Du, Hu, Lee ’18) Suppose , 
, I.e., 

predictions are 1-homogeneous in each layer. Then for every pair 
of layers , the gradient inclusion 
maintains: for all ,  

.

α > 0
f(x; (WH+1, …, αWi, …, W1)) = αf(x, (WH+1, …, W1))

(i, j) ∈ [H + 1] × [H + 1]
t ≥ 0
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Optimization Methods 
for Deep Learning



Gradient descent for non-convex optimization

Decsent Lemma: Let  be twice differentiable, and 
. Then setting the learning rate , and 

applying gradient descent, , we have: 

.

f : ℝd → ℝ
∥∇2f∥2 ≤ β η = 1/β

xt+1 = xt − η∇f(xt)
f(xt) − f(xt+1) ≥ 1

2β
∥∇f(xt)∥2
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Converging to stationary points

Theorem: In  iterations, we have .T = O( β
ϵ2 ) ∥∇f(x)∥2 ≤ ϵ
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