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Universal Approximation

Definition: A class of functions & is universal
approximator over a compact set S (e.g., [0,1]%), if for
every continuous function g and a target accuracy € > 0,
there exists f € F such that

sup | f(x) —g(x) | <€
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Stone-Weierstrass Theorem

Theorem: If F satisfies

1. Each f € & is continuous.

2. Vx,df € F,f(x) # 0

3. Vx #x',df € &F, f(x) # f(x)

4. F is closed under multiplication and vector space

operations, {1, fLEF (T T-EF b EF

Then & is a universal approximator:

Vg:S—>R,e>0,3fe F,|If—¢ll, L€
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Example: cos activation o A Ctiom ! %C'M
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Example: cos activation



Other Examples

Exponential activation

RelLU activation



Curse of Dimensionality () ( gﬁl )

AL
= Unavoidable in the werse case
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= Can we avoid the curse of dimensionality for “nice” functions?
= What are nice functions?
= Fast decay of the Fourier coefficients

Barron’s Theory

= Fourier basis functions:
(e (x) = ¥ = cos((w, x)) + isin({w, x)) | w € RY)

Fourier coefficient: f(w) = J f(x)e_i<w’x>dx
Rd

Fourier integral / representation: f(x) = " f(w)ei<w’x>dw
Rd



Barron’s Theorem

Definition: The Barron constant of a function fis:

céj il | fow) |
Rd

Theorem (Barron ‘93): Forany g : B, — R where

B, ={x&€R:|x|, £ 1} is the unit ball, there exists a
2

3-layer neural network f with O(—) neurons and
€
sigmoid activation function such that

Lo oyt J (f(x) — g(x))%*dx < e.
S



Examples

X
Gaussian function: f(x) = (27T62)d/26Xp | ||2
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= Other functions: ﬁ 218 4[ =) 2'—‘—0

= Polynomials
= Function with bounded derivatives



Proof Ideas for Barron’s Theorem

Step 1: show any continuous function can be written as an infinite
neural network with cosine-like activation functions. -

(Tool: Fourier representation.)

Step 2: Show that a function with small Barron constant can be
approximated by a convex combination of a small number of
cosine-like activation functions.

(Tool: subsampling / probabilistic method.)

Step 3: Show that the cosine function can be approximated by
sigmoid functions.

(Tool: classical approximation theory.)



Simple Infinite Neural Nets

Definition: An infinite-wide neural network is defined by a

signed measure v over neuron weights (w, b) » 372(\ )
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Theorem: Suppose g : R — R is differentiable, if
1 U/;(/L (\/( l/(b)
x € [0,1], then g(x) = 1{_)6/\2/\67} g/(lz)jldb + 2(0)
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Step 1: Infinite Neural Nets

V(W)

The function can be written as/7 /h\
f(x) = £(0) +J [f(w) | (cos(y, + (w, x)) = cos(b,))dw.
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Step 1: Infinite Neural Nets Proof

The function can be written as

f(x) = f(0) + J | f(w) | (cos(b,, + (w, x)) — cos(b,,))dw.

Rd



Step 2: Subsampling

Writing the function as the expectation of a random variable:

£(x) = £(0) + [ [F W) 1wl ( | ¢ (cos(b,, + (w, x)) — cos(bw))> dw.
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Step 2: Subsampling

Writing the function as the expectation of a random variable:

F(x) = £(0) + [ SO 11wl ( ¢ (cos(b,, + (w,x)) — cos(bw))> dw
Rd C Iwll,

| Fn) [[Iwll,

Sample one w € R4 with probability for r times.
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Step 3: Approximating the Cosines

C

Lemma: Given g, (x) = ol (cos(b,, + (w, x)) — cos(b,)),
Wil2

there exists a 2-layer neural network f,, of size O(1/¢) with

sigmoid activations, such that sup |fy(y) —h, (y)]| L€
xe[—1,1]
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Depth Separation

So far we only talk about 2-layer or 3-layer neural networks.
Why we need Deep learning?

Can we show deep neural networks are strictly better than
shallow neural networks?



A brief history of depth separation

Early results from theoretical computer science

Boolean circuits: a directed acyclic graph model for computation
over binary inputs; each node (“gate”) performs an operation (e.g.
OR, AND, NOT) on the inputs from its predecessors.
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A brief history of depth separation

Early results from theoretical computer science

Boolean circuits: a directed acyclic graph model for computation
over binary inputs; each node (“gate”) performs an operation (e.g.
OR, AND, NOT) on the inputs from its predecessors.

Depth separation: the difference of the computation power:
shallow vs deep Boolean circuits.

Hastad (’86): parity function cannot be approximated by a small
constant-depth circuit with OR and AND gates.



Modern depth-separation in neural networks

* Related architectures / models of computation
e Sum-product networks [Bengio, Delalleau '11]

 Heuristic measures of complexity

 Bound of number of linear regions for ReLU networks
[Montufar, Pascanu, Cho, Bengio ‘14]

 Approximation error

* A small deep network cannot be approximated by a small
shallow network [Telgarsky '13]



Shallow Nets Cannot Approximate Deep Nets

Theorem (Telgarsky ’15): For every L € N, there exists
a function f : [0,1] — [0,1] representable as a network
of depth O(L?), with O(L?) nodes, and ReLU activation
such that, for every network g : [0,1] — R of depth L
and < 2% nodes, and ReLU activation, we have

1
|f(x) — gx) |dx > —.



Intuition

A ReLU network f'is piecewise linear, we can subdivide domain
into a finite number of polyhedral pieces (P, P,, . .., Py) such
that in each piece, fis linear: Vx € P, f(x) = A;x + b;.

Deeper neural networks can make exponentially more regions
than shallow neural networks.

Make each region has different values, so shallow neural
networks cannot approximate.



Benefits of depth for smooth functions

Theorem (Yarotsky ’15): Suppose f : [0,1]¢ = R has
all partial derivatives of order r with coordinate-wise
boundin [—1,1], and let € > O be given. Then there

d
| 1 AN
exists a O(In —) - depth and | — -size network so
€ €

that sup |[f(x) —gkx)| <e.
x€[0,11¢



Remarks

 All results discussed are existential: they prove that a good
approximator exists. Finding one efficiently (e.g., using gradient
descent) is the next topic (optimization).

e The choices of non-linearity are usually very flexible: most
results we saw can be re-proven using different non-linearities.

* There are other approximation error results: e.g., deep and
narrow networks are universal approximators.

e Depth separation for optimization and generalization is widely
open.



Recent Advances in Representation Power

Analyses of different architectures

= Graph neural network

= Attention-based neural network
Separation between transformers and RNNs
Finite data approximation

In-context learning for specific tasks
Chain-of-thought



