(ap)
<FT S
H O
TS
) £
O n

CSE543: Deep Learning

Instructor: Simon Du

Teaching Assistant: Runjia Li, Ruizhe Shi

Course Website (contains all logistic information): https://courses.cs.washington.edu/
courses/cseb43/25au/

Questions: Ed Discussion

Announcements: Canvas

Homework: Canvas

CSE543: Deep Learning

What this class is:

 Fundamentals of DL: Neural network architecture, approximation

properties, optimization, generalization, generative models,
representation learning

* Preparation for further learning / research: the field is fast-

moving, you will be able to apply the fundamentals and teach
yourself the latest

What this class is not:

 An easy course: mathematically easy
* A survey course: laundry list of algorithms

« An application course: implementation of different architectures on
different datasets

Prerequisites

= Working knowledge of:

= Linear algebra

= Vector calculus

= Probability and statistics

= Algorithms

= Machine leanring (CSE 446/546)
= Mathematical maturity

= “Can | learn these topics concurrently?”

Lecture

= Time: Tuesday and Thursday 11:30 AM - 12:50PM
= ECE 045 or Zoom (see website for the schedule)
= Slides + handwritten notes (e.g., proofs)

= Zoom link on Canvas

= Tentative schedule on course website

Homework (40%)

= 2 homework (20%+20%)

0 Each contains both theoretical questions and
programming questions

0 Related to course materials

0 Collaboration okay but must write who you collaborated
with. You must write, submit, and understand your
answers and code.

0 Submit on Canvas
0 Must be typed
0 Two late days
O Tentative timeline:
0 HW 1 due: 10/23
0 HW 2 due: 11/6

Course Project (60%)

= Group of 2-4.

= Topic: literature review (state-of-the-art) or original
research.

= Post on Ed Discussion to form teams.

= Some potential topics are in listed on Canvas. OK to do a
project not listed.

= You can work on a project related to your research.
= Proposal (due: 10/9): 5%
= Format: NeurlPS Latex format, ~1 - 1.5 pages
= Presentations on (12/2 and 12/4 on Zoom): 20%
= Final report (due: 12/12): 35%
= Format: NeurlPS Latex format, ~8 pages
= Submit on Canvas

Possible Topics

= Approximation properties

= Advanced optimization methods

= Optimization theory for deep learning
= Generalization theory for deep learning
= Deep reinforcement learning

= |Implicit regularization

= Meta-learning

= Robustness

= Neural network compression

= Pre-training, fine-tuning, RLHF, RLVR
= Deep learning application

Communication Chanels

= Announcements
= Canvas
= questions about class, homework help
Ed Discussion
Office hours:
Simon Du: Tu 10:00 - 11:00 AM, CSE2 312
Runjia Li: W 10:00 - 11:00 AM, CSE2 152
Ruizhe Shi: Tu 16:00 - 17:00, CSE2 151
Regrade requests
Canvas
Personal concerns:
O Email to instructor or TAs

Topic 1: Review (Today)

= ML Review: training, generalization

= Neural network basics: fully-connected neural network,
gradient descent

Topic 2: Approximation Theory

= \Why neural networks can express the (regression,
classification, ...) function you want?

= Construction of such desired neural networks
= Universal approximation theorem

Topic 3: Optimization

= Review: Back-propagation
= Auto-differentiation

= Advanced optimizers: momentum (Nesterov acceleration),
adaptive method (AdaGrad, Adam)

o Techniques for improving optimization: batch-norm, layer-
norm,

o Theory global convergence of gradient of over-

parameterized neural networks
FaEENeE

= Neural Tangent Kernel

—

Topic 4: Generalization v,

= Measures of generalization |
J /\, (3(/»\@/’0\(‘{\/

= Double descent

= Techniques for improving generalization

= (Generalization theory beyond VC-dimension L
= |mplicit regularization

= Why NN outperforms kernel

Topic 5: Architecture

Convolutional neural network
Recurrent neural network
= LSTM
Attention-based neural network
= Transformer
General framework

Topic 6: Representation Learning / Pre-Training

= Multi-task representation learning
= Auto-regressive pre-training

= Multi-modal learning

= Contrastive learning

= Meta-learning

= Data

= Theory

Topic 7: Generative Models

= Generative adversarial network
= Variational Auto-Encoder

= Energy-based models

= Normalizing flows

= Diffusion models

@ Spotify’

Discover Weekly amazon

~~—Tprime
98% Match

ML uses past data to make predictions

MileagePlus Explorer
oooooo A owwo

ads

e

Supervised Learning Process Jguctn Jr))
ﬁ(ﬁ“’/%)é,\é{ q/)\d/ \; llq) o Jvenv jLW(W

o, e Jug(i’ﬁmﬂou
Collect a dataset %’ < R Ve?mfio“) @ Tvee

vl wrle
Decide on a model j: Qd) ﬂ())—-;H @ neu (/IJ
= D P

Find the function which fits the data best ‘() L
Choose a loss function { (T()) ‘ét) —) R / 7L ¥)

Pick the function which minimii?s loss > qL >\ &(j)

on data ? 4/(%@“@}*3— j{(f(m/ 1

-— 'T
Use function to make prediction on new Yo ~+) [l 3
examples ¥ yew/ hopt

QVOdl(ﬂM: :}\ (XW‘”) 2% yn@w

18

Framework O+ ciswibuti
Fix T (“f
(ool ; Test oo’

LTQC’\(/ zf X/y BUL(%)/ %j

L (T) = £z ﬂv %)
Lt (T) = Lw THWUL [—(tv (T)

i
- 7ML/\&W) Ltv { Jy) pr gv/o;/
T ﬂ‘im{ 901N v
(T %ﬂ'g']f [(F) 9 %

eﬁl!}@ﬁov
Lito (T) — Lt (]q 7 VWo/

Neural Networks [oy€v
\h

WQ‘I

f-d ol P”T

nolt | newavt fumt [k

podh wode: | | . upop 900 WWVWVM
0 mwﬂ_ | to the Anpd OJL e

L) ot s+ Qadr Jwk e

) odtpet AV)

Single Node

“bias unit” L0 go
27N L1 1
[T — X = H —
_()/\\fo L9 92
0o | T3 03
< 91 \\\
— 3
ik 0 .
2 Binary
@ > Z / '_>h9() (HT) Logistic
(93 Regression
14 e 0T
9: NE f\(/\GM/
1
Sigmoid (logistic) activation function: () |+ o>

Based on slide by Andrew Ng

Dol U (3) = mar §2,0)

Neural Network

- (() - (2] 3 U
- ~ v N b
ko io <l af-g z)
bias units ! Tos Ll 3 (Y
‘~—"“\\\\\"9 < B 01§>
| % 7<0
[
— hp(x)
Layer 1 Layer 2 Layer 3
(Input Layer) (Hidden Layer) (Output Layer)

Slide by Andrew Ng 11

OU) = weight matrix stores parameters

© i’ . al) = “activation” of unit j in layer j
A'A gz;? a; —>h9 (X) . . .
e from layerj to layerj + 1

a&z) = (@%):130 + @(1):13 + @(1):1:2 + @%)333)
a§2) = g(@(l)az + @(1)x1 + @():13 + @;?333)

aéz) = g(@(l)xo + @()a: + @()x + @%)xg)
r0(0) = al? = oOFal? +0Dal? + 0l + 0l

If network has Sj units in Iayerj and S;,; units in layer j+1,
then OV has dlmen5|on Siv1 X (S+1)

@(1) c R3X4 @(2) c R1X4

Slide by Andrew Ng

Multi-layer Neural Network - Binary Classification

al) = x

o (1+1)
' L(y,y) =ylog(y) + (1 — y)log(1 — y)
o (L) (L)
y T g(@ a) () _ 1 Binz.m{
TR,

Multi-layer Neural Network - Binary Classification

al) = x

o 1)
' L(y,y)=ylog(y)+ (1 —ylog(l -y
- g(@(L)a(L)) (v, y) =ylog(y)+ (1 —ylog(l —y)
7(2) = max{0, 2} g(e)=—— Lo
| e

Multiple Output Units: One-vs-Rest

Multi-class
Logistic
Regression
1 0 [0 | [0 |
0 1 0 0
h@(X) ~ 0 he (X) ~ 0 h@(X) ~ 1 h@(X) ~ 0
| 0 | 0 | 0 1
when pedestrian when car when motorcycle when truck

Slide by Andrew Ng 17

Multi-layer Neural Network - Regression

al) = x

O‘(Z) = maX{O, Z} Regression

oD =

-2 = @4

a® = g (z®)

LD — @D O
al+) = g (Z(1+1)>

7= g(O@@a®)

SR

7& RN 2K
S “ X

SPORIOLS

DV
255
N> N\
/“\\\W
)

2
%
4

L(y,y) =ylog(y) + (1 —y)log(1 — y)
1

1 +e=

g(z) =

Gradient Descent: @) « @) —gv@(Z)L(ya@ \/

S Si2¢ 20

Gradient Descent: @(l) <— @(l) — nv@(z)L(% Z//\) W/

J ok
Seems simple enough, why are packages like PyTorch, Tensorflow,

Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation

2. Convenient libraries

3. GPU support

Gradient Descent:

Seems simple enough|
Theano, Cafe, MxNet {

1. Automatic differ

2. Convenient librg

class Net(nn.Module):

def

def

__init__(self):

super(Net, self).__init__()

1 input image channel, 6 output channels, 3x3 square convolution
kernel

self.convl = nn.Conv2d(1, 6, 3)

self.conv2 = nn.Conv2d(6, 16, 3)

an affine operation: y = Wx + b

self.fcl = nn.Lineax(16 * 6 x* 6, 120) # 6*6 from image dimension
self.fc2 = nn.Linear (120, 84)

self.fc3 = nn.Linear(84, 10)

forward(self, x):

Max pooling over a (2, 2) window

x = F.max_pool2d(F.relu(self.convli(x)), (2, 2))

If the size is a square you can only specify a single number

X X X X

retu

.max_pool2d(F.relu(self.conv2(x)), 2)
.view(-1, self.num_flat_features(x))
.relu(self.fcl1(x))

.relu(self.fc2(x))

self.fc3(x)

rn X

m M X M

create your optimizer

optimizer = optim.SGD(net.parameters(), 1lr=0.01)

in your training loop:

optimizer.zero_grad() # zero the gradient buffers

output = net(input)

loss = criterion(output, target)
loss.backwazrd()

optimizer.step() # Does the update

