(ap)
<FT S
H O
TS
) £
O n




CSE543: Deep Learning

Instructor: Simon Du

Teaching Assistant: Runjia Li, Ruizhe Shi

Course Website (contains all logistic information): https://courses.cs.washington.edu/
courses/cseb43/25au/

Questions: Ed Discussion

Announcements: Canvas

Homework: Canvas




CSE543: Deep Learning

What this class is:

 Fundamentals of DL: Neural network architecture, approximation

properties, optimization, generalization, generative models,
representation learning

* Preparation for further learning / research: the field is fast-

moving, you will be able to apply the fundamentals and teach
yourself the latest

What this class is not:

 An easy course: mathematically easy
* A survey course: laundry list of algorithms

« An application course: implementation of different architectures on
different datasets



Prerequisites

= Working knowledge of:

= Linear algebra

= Vector calculus

= Probability and statistics

= Algorithms

= Machine leanring (CSE 446/546)
= Mathematical maturity

= “Can | learn these topics concurrently?”



Lecture

= Time: Tuesday and Thursday 11:30 AM - 12:50PM
= ECE 045 or Zoom (see website for the schedule)
= Slides + handwritten notes (e.g., proofs)

= Zoom link on Canvas

= Tentative schedule on course website



Homework (40%)

= 2 homework (20%+20%)

0 Each contains both theoretical questions and
programming questions

0 Related to course materials

0 Collaboration okay but must write who you collaborated
with. You must write, submit, and understand your
answers and code.

0 Submit on Canvas
0 Must be typed
0 Two late days
O Tentative timeline:
0 HW 1 due: 10/23
0 HW 2 due: 11/6




Course Project (60%)

= Group of 2-4.

= Topic: literature review (state-of-the-art) or original
research.

= Post on Ed Discussion to form teams.

= Some potential topics are in listed on Canvas. OK to do a
project not listed.

= You can work on a project related to your research.
= Proposal (due: 10/9): 5%
= Format: NeurlPS Latex format, ~1 - 1.5 pages
= Presentations on (12/2 and 12/4 on Zoom): 20%
= Final report (due: 12/12): 35%
= Format: NeurlPS Latex format, ~8 pages
= Submit on Canvas



Possible Topics

= Approximation properties

= Advanced optimization methods

= Optimization theory for deep learning
= Generalization theory for deep learning
= Deep reinforcement learning

= |Implicit regularization

= Meta-learning

= Robustness

= Neural network compression

= Pre-training, fine-tuning, RLHF, RLVR
= Deep learning application



Communication Chanels

= Announcements
= Canvas
= questions about class, homework help
Ed Discussion
Office hours:
Simon Du: Tu 10:00 - 11:00 AM, CSE2 312
Runjia Li: W 10:00 - 11:00 AM, CSE2 152
Ruizhe Shi: Tu 16:00 - 17:00, CSE2 151
Regrade requests
Canvas
Personal concerns:
O Email to instructor or TAs



Topic 1: Review (Today)

= ML Review: training, generalization

= Neural network basics: fully-connected neural network,
gradient descent



Topic 2: Approximation Theory

= \Why neural networks can express the (regression,
classification, ...) function you want?

= Construction of such desired neural networks
= Universal approximation theorem



Topic 3: Optimization

= Review: Back-propagation
= Auto-differentiation

= Advanced optimizers: momentum (Nesterov acceleration),
adaptive method (AdaGrad, Adam)

o Techniques for improving optimization: batch-norm, layer-
norm,

o Theory global convergence of gradient of over-

parameterized neural networks
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= Neural Tangent Kernel
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Topic 4: Generalization v,

= Measures of generalization |
J /\, (3(/»\@/’0\(‘{\/

= Double descent

= Techniques for improving generalization

= (Generalization theory beyond VC-dimension L
= |mplicit regularization

= Why NN outperforms kernel




Topic 5: Architecture

Convolutional neural network
Recurrent neural network
= LSTM
Attention-based neural network
= Transformer
General framework



Topic 6: Representation Learning / Pre-Training

= Multi-task representation learning
= Auto-regressive pre-training

= Multi-modal learning

= Contrastive learning

= Meta-learning

= Data

= Theory



Topic 7: Generative Models

= Generative adversarial network
= Variational Auto-Encoder

= Energy-based models

= Normalizing flows

= Diffusion models
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Single Node
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Neural Network
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OU) = weight matrix stores parameters

© i’ . al) = “activation” of unit j in layer j
A'A gz;? a; —>h9 (X) . . .
e from layerj to layerj + 1
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Multi-layer Neural Network - Binary Classification
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Multi-layer Neural Network - Binary Classification

al) = x
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Multiple Output Units: One-vs-Rest
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Multi-layer Neural Network - Regression

al) = x

O‘(Z) = maX{O, Z} Regression
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Gradient Descent: @(l) <— @(l) — nv@(z)L(% Z//\) W/

J ok
Seems simple enough, why are packages like PyTorch, Tensorflow,

Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation

2. Convenient libraries

3. GPU support




Gradient Descent:

Seems simple enough|
Theano, Cafe, MxNet {

1. Automatic differ

2. Convenient librg

class Net(nn.Module):

def

def

__init__(self):

super(Net, self).__init__()

# 1 input image channel, 6 output channels, 3x3 square convolution
# kernel

self.convl = nn.Conv2d(1, 6, 3)

self.conv2 = nn.Conv2d(6, 16, 3)

# an affine operation: y = Wx + b

self.fcl = nn.Lineax(16 * 6 x* 6, 120) # 6*6 from image dimension
self.fc2 = nn.Linear (120, 84)

self.fc3 = nn.Linear(84, 10)

forward(self, x):

# Max pooling over a (2, 2) window

x = F.max_pool2d(F.relu(self.convli(x)), (2, 2))

# If the size is a square you can only specify a single number

X X X X

retu

.max_pool2d(F.relu(self.conv2(x)), 2)
.view(-1, self.num_flat_features(x))
.relu(self.fcl1(x))

.relu(self.fc2(x))

self.fc3(x)

rn X

m M X M

# create your optimizer

optimizer = optim.SGD(net.parameters(), 1lr=0.01)

# in your training loop:

optimizer.zero_grad() # zero the gradient buffers

output = net(input)

loss = criterion(output, target)
loss.backwazrd()

optimizer.step() # Does the update




