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Implicit Generative Model

e Goal: a sampler g( - ) to generate images
e A simple generator g(z; 0):
ez~ N(0,I)

e x = g(z;0) deterministic transformation

e Likelihood-free training:
* Given a dataset from some distribution p,,,.,
e Goal: g(z; 0) defines a distribution, we want this distribution % p .,
e Training: minimize D(g(z; @), Py.10)
e D is some distance metric (not likelihood)
e Key idea: Learn a differentiable D



GAN (Goodfellow et al., ‘14)

e Parameterize the discriminator D( - ; ¢) with parameter ¢

e Goal: learn ¢ such that D(x; ¢) measures how likely x is from p,_...

e D(x,p)=1ifx~p,,..

e D(x, ¢) = 0if x! ~ Pdata
e a.k.a., a binary classifier

e GAN: use a neural network for D( - ; ¢)

e Training: need both negative and positive samples
e Positive samples: just the training data

e Negative samples: use our sampler g( - ; z) (can provide infinite samples).

e Overall objectives:
o Generator: 0% = max D(g(z;0); ¢)
0

® Discriminator uses MLE Training:
*=maxE, , [logD(x;¢)]+ E; o llog(l — D(X; )]
¢



GAN (Goodfellow et al., ‘14)

e Generator G(z; @) where z ~ N(0,I)
e Generate realistic data

e Discriminator D(x; ¢)
e Classify whether the data is real (from p,,,) or fake (from G)

e Objective function:
L(9,¢) = minmax E,_, |logD(x; )| + E;¢ [log(1 — D(&; ¢))]
9 ¢ ata

e Training procedure:
e Collect dataset {(x,1)|x ~ p .., } U {(X,0) ~ g(z;0)}
e Train discriminator

D:L@$) =E,., [logDx;h)|+E;.g[log(l — DG; )]
e Train generator G : L(0) = E, ¢ 1 [log D(G(z; 0), 4))]
e Repeat



GAN (Goodfellow et al., ‘14)

e Objective function:
L, ¢) = mnmaxE, , [log D(x; (/ﬁ)] + E; [log(l — D(x; (,b))]
0 ¢
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Math Behind GAN



Math Behind GAN



KL-Divergence and JS-Divergence
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Math Behind GAN



Evaluation of GAN

e No p(x) in GAN. o
e |dea: use a trained classifier f(y | x): 9z r
e Ifx ~py....J(y]|x)should have low entropy D
e Otherwise, f(y | x) close to uniform.
e Samples from G should be diverse: oo mE
o pr(y) = E, LAY | x)] close to uniform. 2 1 é;" ¥ g

Similar labels sum to give focussed distribution Different labels sum to give uniform distribution

|
=

sum

sum




Evaluation of GAN

¢ Inception Score (IS, Salimans et al. ’16)
e Use Inception V3 trained on ImageNet as f(y | x)

o IS =exp <[Ex~G [KL(f(y | X) | Ipf(y)))D
e Higher the better

High KL divergence Medium KL divergence Low KL divergence
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Comments on GAN

e Other evaluation metrics:
e Fréchet Inception Distance (FID): Wasserstein distance between Gaussians

e Mode collapse:
e The generator only generate a few type of samples.
e Or keep oscillating over a few modes.

e Training instability:
e Discriminator and generator may keep oscillating
e Example: —xy, generator X, discriminatory. NE: x = y = 0 but GD oscillates.
e No stopping criteria.
e Use Wsserstein GAN (Arjovsky et al. "17):
min  max Eyo, ] = Bz [FE)]
e And need many other tricks...



Energy-Based Models

W



Energy-based Models

e Goal of generative models:
e a probability distribution of data: P(x)

e Requirements
e P(x) > O (non-negative)
. J PXx)dx =1

X

e Energy-based model:
e Energy function: E(x; ), parameterized by 6

o P(x) = l exp(—E(x; 8)) (why exp?)
Z

W= [ exp(—E(x; 8))dx



Boltzmann Machine

e Generative model

1 T
.E(y)=—5y Wy

o« P(y) =— exp(—Ty), T: temperature hyper-parameter
<

e W: parameter to learn
e When y; is binary, patterns are affecting each other through W




Boltzmann Machine: Training

e Objective: maximum likelihood learning (assume T =1):
e Probability of one sample:

exp(5y 1Y)
2., exp(yTWy)

P(y) =
e Maximum log-likelihood:

1 1 |
LW) =— 3~y Wy —log 3’ exp(-yTWy)
yeD y'



Boltzmann Machine: Training



Boltzmann Machine: Training



Boltzmann Machine with Hidden Neurons

¢ \isible and hidden neurons:
e y: visible, /: hidden
PO =) POLY)
h
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Boltzmann Machine with Hidden Neurons: Training



Boltzmann Machine with Hidden Neurons: Training



Restricted Bolzmann Machine

e A structured Boltzmann Machine
e Hidden neurons are only connected to visible neurons
e No intra-layer connections
e Invented by Paul Smolensky in 89
e Became more practical after Hinton invested fast learning algorithms in mid
2000
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Restricted Bolzmann Machine

e Computation Rules
e |terative sampling

P(h;|v) =

, Hidden neurons 7;: z; = Z WV,

J 1 + exp(—2z)

, Visible neurons v;: z; = Z wiihy, P(v;| h) =

1 + exp(—z;)

HIDDEN

VISIBLE



Restricted Bolzmann Machine

e Sampling:
» Randomly initialize visible neurons v,
e |terative sampling between hidden neurons and visible neurons
e Get final sample (v, h_,)




Restricted Bolzmann Machine

e Maximum likelihood estimated:
o le-jL(W) — VOl 0 _Z Vooi 00]
veP

e No need to lift up the entire energy landscape!
e Raising the neighborhood of desired patterns is sufficient
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Deep Bolzmann Machine

e Can we have a deep version of RBM?
e Deep Belief Net ('06)
e Deep Boltzmann Machine ('09)

e Sampling?
e Forward pass: bottom-up
e Backward pass: top-down

e Deep Bolzmann Machine
e The very first deep generative model
e Salakhudinov & Hinton
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Deep Bolzmann Machine

Deep Boltzmann Machine Training Samples Generated Samples
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Summary

 Pros: powerful and flexible

1
o An arbitrarily complex density function p(x) = — exp(—E(x))
<

e Cons: hard to sample / train
e Hard to sample:
e MCMC sampling
e Partition function
e No closed-form calculation for likelihood
e Cannot optimize MLE loss exactly
e MCMC sampling



