Representation Learning Pre-training

Contrastive learning

Idea: if features are "semantically" relevant, a "distortion" of an image should produce similar features.

Framework:

- For every training sample, produce multiple *augmented* samples by applying various transformations.
- Train an encoder **E** to predict whether two samples are augmentations of the same base sample.
- A common way is train $\langle E(x), E(x') \rangle$ big if x, x' are two augmentations of the same sample:

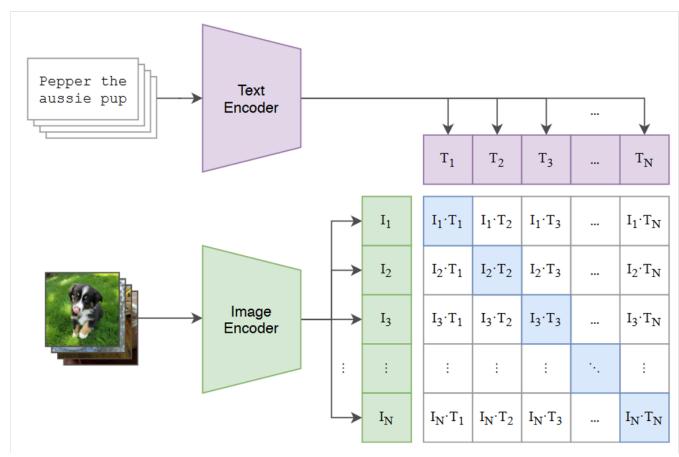
$$\mathcal{C}_{x,x'} = -\log\left(\frac{\exp(\tau\langle E(x), E(x')\rangle)}{\sum_{\tilde{x}} \exp(\tau\langle E(x), E(\tilde{x})\rangle)}\right)$$
min
$$\sum_{x,x'} \mathcal{C}_{x,x'}$$

$$x,x' \text{ augments of each other}$$

(image, text)

Contrastive Pretraining:

Train image and text representation together



Multimodal Contrastive Learning

Loss function Scorb

Let
$$q_{ij} \coloneqq I_i^{\mathsf{T}} T_j$$
 (normalized

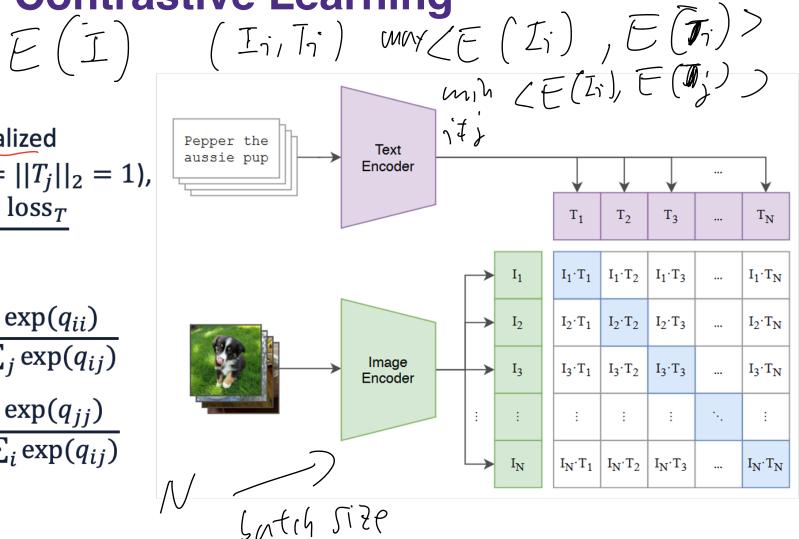
embeddings:
$$||I_i||_2 = ||T_j||_2 = 1$$
),

$$loss = \frac{loss_I + loss_T}{2}$$

where,

$$loss_{I} = -\sum_{i=1}^{N} log \frac{exp(q_{ii})}{\sum_{j} exp(q_{ij})}$$

$$loss_{I} = -\sum_{i=1}^{N} log \frac{exp(q_{ii})}{\sum_{j} exp(q_{ij})}$$
$$loss_{T} = -\sum_{j=1}^{N} log \frac{exp(q_{jj})}{\sum_{i} exp(q_{ij})}$$

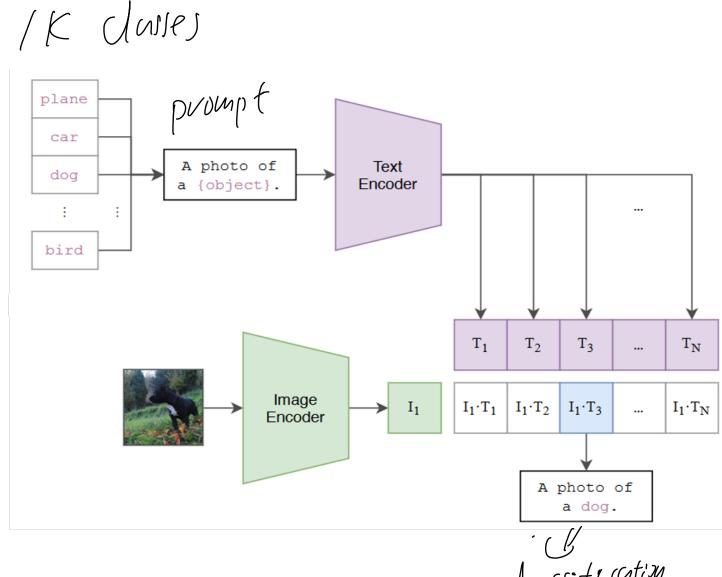


Multimodal Contrastive Learning

(LIP)

Zero-Shot Classification:

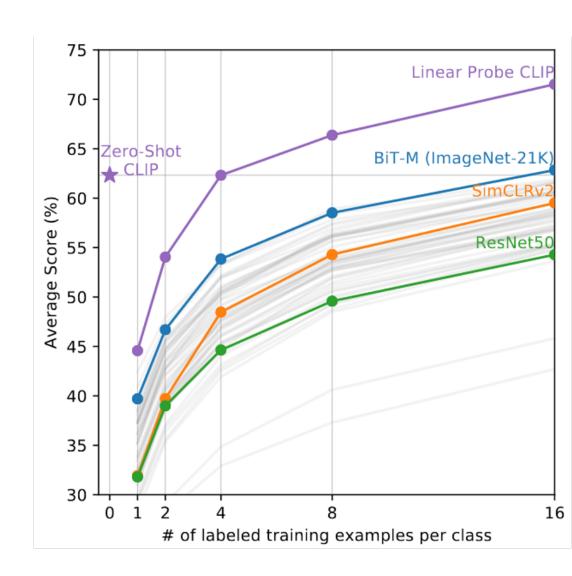
Generate a prompt for each class



Multimodal Contrastive Learning

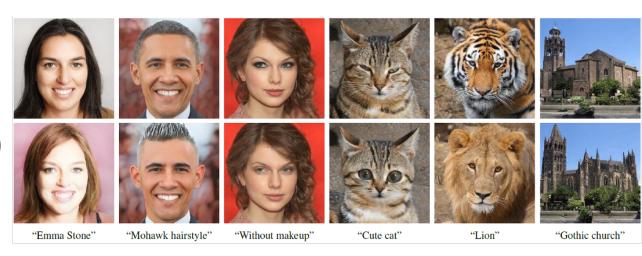
Results

- Strong zero-shot and few-shot performance compared with other models.
- Zero-shot performance on ImageNet: CLIP ≈ fully supervised ResNet50!



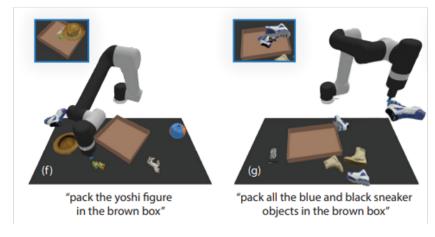
Applications of CLIP

Image Generation (StyleCLIP [Patashnik et al. 2021])



Robotics (CLIPort [Shridhar et al. 2021])

•••



Problems about Training CLIP

Require large amount of *carefully curated* image-text pairs

4 Billion closed-source data used for OpenAl's CLIP

One choice: Web-curated data pairs + data filtering

DataComp

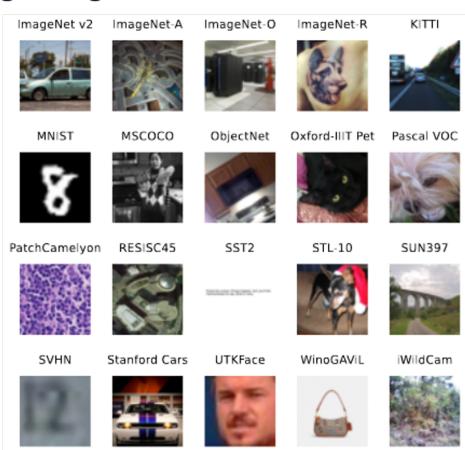
A benchmark standardize the training configuration

Training Process:

- Filtering data from a pool of *low-quality* data pairs
- Train a CLIP model with a fixed architecture and hyperparameters
- Fix total number of training data
 seen (1 pass of 4B data = 4 passes of 1B data)

Evaluation:

38 Zero-shot downstream tasks



Data Filtering

Distribution-agnostic methods

Image-based filtering

 Cluster the image embeddings (from a pre-trained CLIP model) of training data, and select the groups that contain at least one embedding from ImageNet-1k

CLIP score filtering

 Filter the data with low CLIP similarity assigned by a pre-trained CLIP model.

 $\texttt{CLIP score} = \bar{f}_{\texttt{image}}^T \bar{f}_{\texttt{text}}$

teacha model

Data Filtering

Setup:

Total number of training sample seen = 12.8M

Filtering Strategy	Dataset Size	ImageNet (1 sub-task)	ImageNet Dist. Shift (5)	VTAB (11)	Retrieval (3)	Average (38)
No filtering	12.8M	2.5	3.3	14.5	10.5	13.2
CLIP score (30%, reproduced)	3.8M	4.8	5.3	17.1	11.5	15.8
Image-based ∩ CLIP score (45%)	1.9 M	4.2	4.6	17.4	10.8	15.5
\mathbb{D}^2 Pruning (image+text, reproduced)	3.8M	4.6	5.2	18.5	11.1	16.1
CLIP score (45%)	5.8M	4.5	5.1	17.9	12.3	16.1

Filtering significantly improves the performance!

au to vegresive

Generative Models

Training Data(CelebA)

Model Samples (Karras et.al., 2018)

4 years of progression on Faces

2015

Brundage et al., 2017

Image credits to Andrej Risteski

BigGAN, Brock et al '18

Conditional generative model P(zebra images | horse images)

Style Transfer

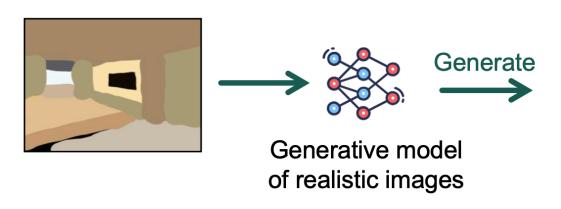
Image credits to Andrej Risteski

Source actor

Real-time reenactment

Target actor

Generative model



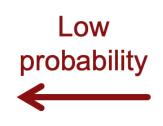
Stroke paintings to realistic images [Meng, He, Song, et al., ICLR 2022]

Generative model of paintings

Language-guided artwork creation https://chainbreakers.kath.io @RiversHaveWings

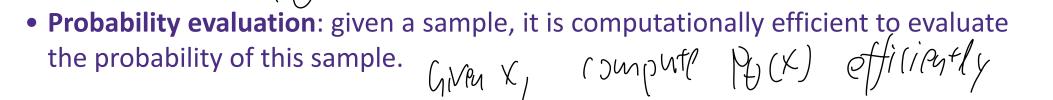
Generative model

Generative model of traffic signs



Outlier detection [Song et al., ICLR 2018]

Desiderata for generative models



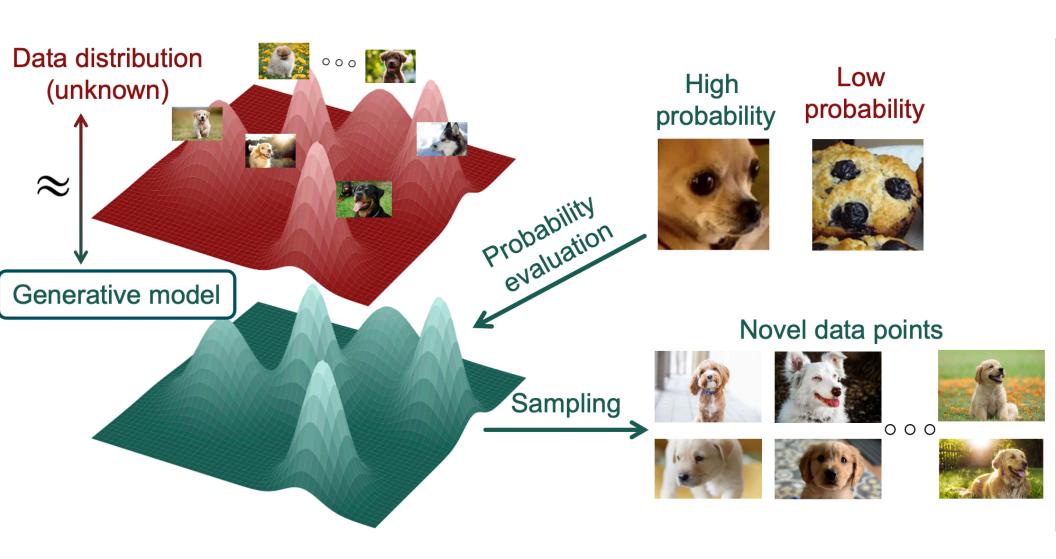
• Flexible model family: it is easy to incorporate any neural network models.

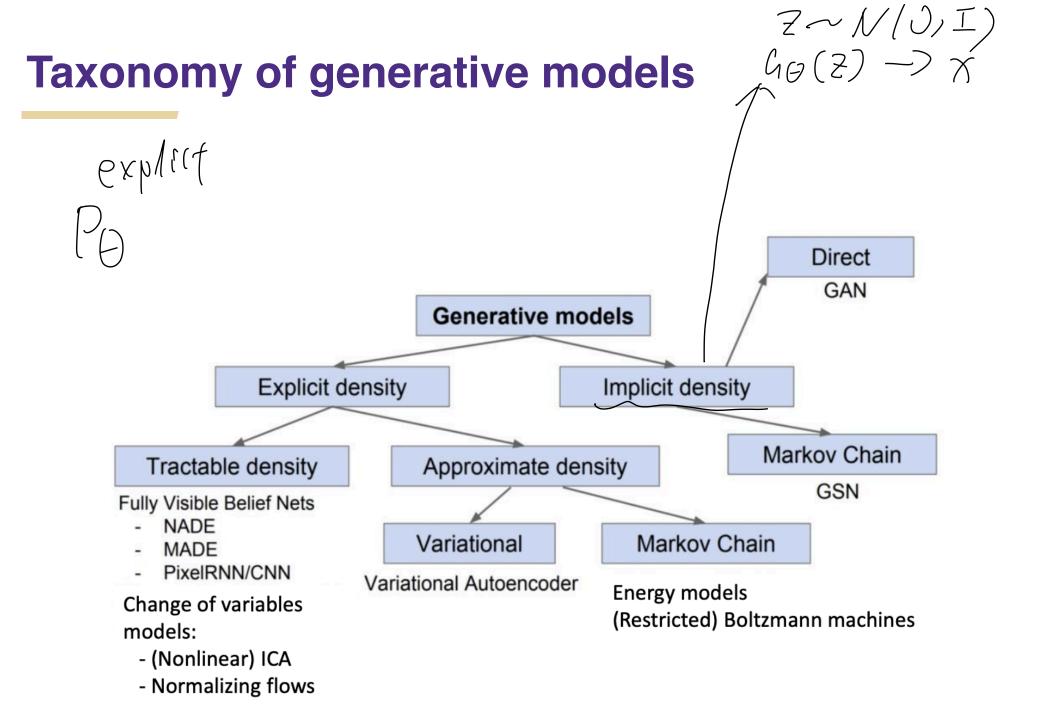
• Easy sampling: it is computationally efficient to sample a data from the probabilistic model.

Sample + vom | + vom

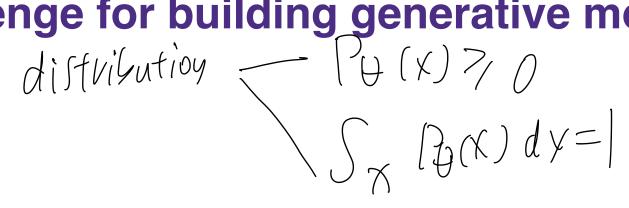
Missa Sanctmo

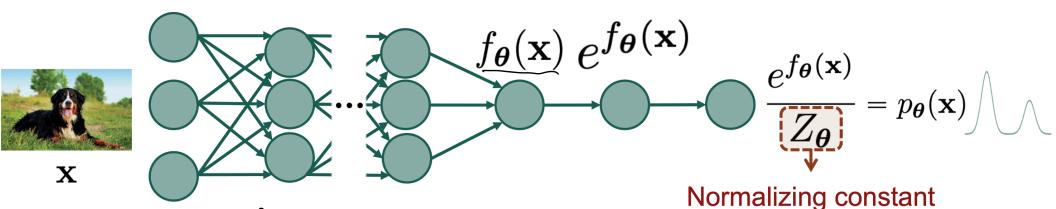
Desiderata for generative models





Key challenge for building generative models





Key challenge for building generative models

Approximating the normalizing constant

- Variational auto-encoders [Kingma & Welling 2014, Rezende et al. 2014]
- Energy-based models [Ackley et al. 1985, LeCun et al. 2006]

Inaccurate probability evaluation

Using restricted neural network models

- Autoregressive models [Bengio & Bengio 2000, van den Oord et al. 2016]
- Normalizing flow models [Dinh et al. 2014, Rezende & Mohamed 2015]

Restricted model family

Generative adversarial networks (GANs)

 Model the generation process, not the probability distribution [Goodfellow et al. 2014]

Cannot evaluate probabilities

Training generative models

• **Likelihood-based:** maximize the likelihood of the data under the model (possibly using advanced techniques such as variational method or MCMC):

$$\max_{\theta} \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

- Pros:
 - Easy training: can just maximize via SGD.
 - **Evaluation**: evaluating the fit of the model can be done by evaluating the likelihood (on test data).
- Cons:
 - Large models needed: likelihood objectve is hard, to fit well need very big model.
 - Likelihood entourages averaging: produced samples tend to be blurrier, as likelihood encourages "coverage" of training data.

Training generative models

• Likelihood-free: use a surrogate loss (e.g., GAN) to train a discriminator to differentiate real and generated samples.

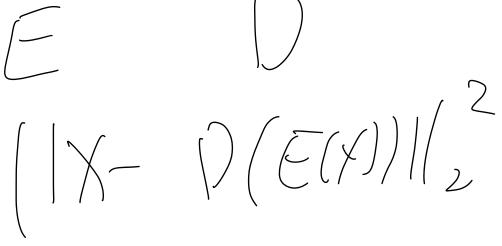
• Pros:

• Better objective, smaller models needed: objective itself is learned - can result in visually better images with smaller models.

• Cons:

- Unstable training: typically min-max (saddle point) problems.
- Evaluation: no way to evaluate the quality of fit.

Variational Autoencoder



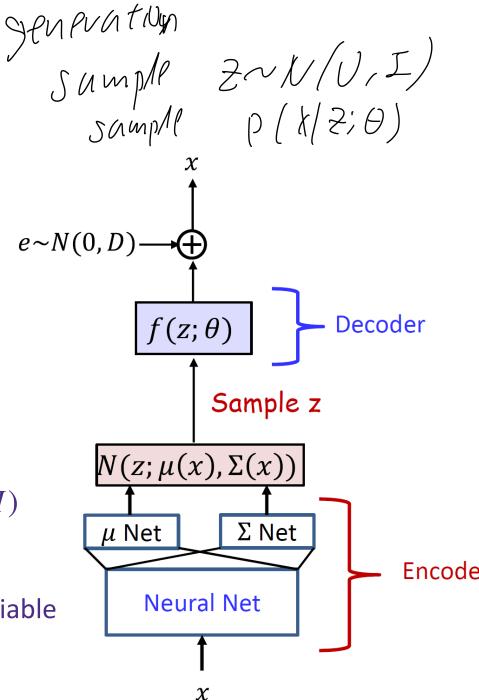
Architecture

- Auto-encoder: $x \to z \to x$
- Encoder: $q(z | x; \phi) : x \to z$
- Decoder: $p(x | z; \theta) : z \to x$

$$q(z \mid x; \phi) = N(\mu(x; \phi), \operatorname{diag}(\exp(\sigma(x; \phi))))$$

- Gaussian prior: p(z) = N(0,I)
- Gaussian likelihood: $p(x \mid z; \theta) \sim N(f(z; \theta), I)$

• Probabilistic model interpretation: latent variable model.

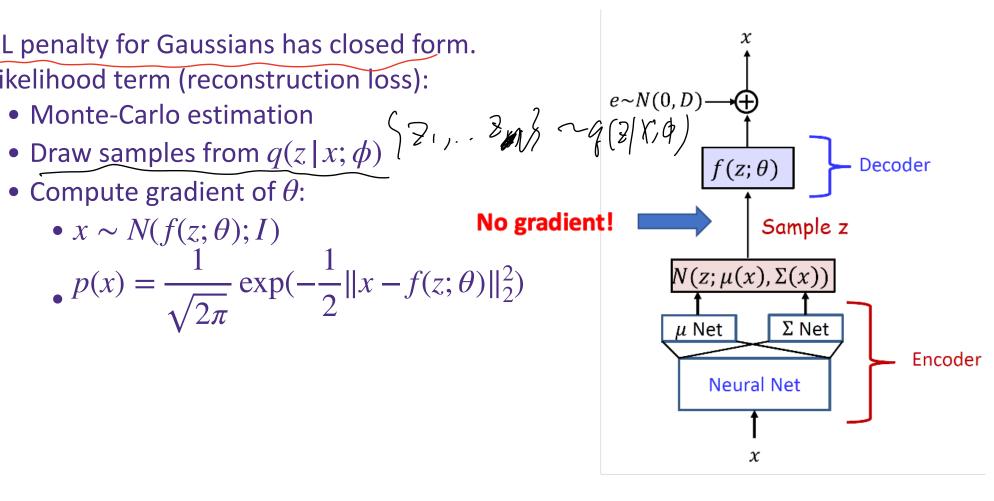


VAE Training

Bux esigy

- Training via optimizing ELBO
 - $L(\phi, \theta; x) = \mathbb{E}_{z \sim q(z|x;\phi)}[\log p(z|x;\theta)] KL(q(z|x;\phi)||p(z))$
 - Likelihood term + KL penalty
- KL penalty for Gaussians has closed form.
- Likelihood term (reconstruction loss):

•
$$x \sim N(f(z;\theta);I)$$
• $p(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}||x - f(z;\theta)||_2^2)$



VAE Training

- Likelihood term (reconstruction loss):
 - Gradient for ϕ . Loss: $L(\phi) = \mathbb{E}_{z \sim q(z;\phi)} \left[\log p(x \mid z) \right]$
 - Reparameterization trick:

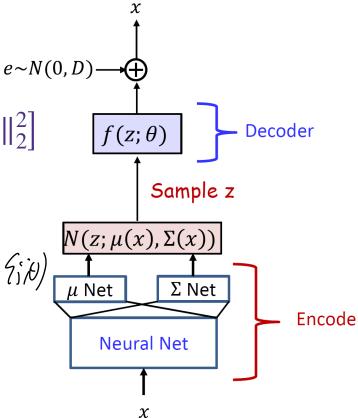
•
$$z \sim N(\mu, \Sigma) \Leftrightarrow z = \mu + \epsilon, \epsilon \sim N(0, \Sigma)$$

•
$$L(\phi) \propto \mathbb{E}_{z \sim q(z|\phi)} \left[||f(z;\theta) - x||_2^2 \right]$$

$$\propto \mathbb{E}_{\epsilon \sim N(0,I)} \left[||f(\mu(x;\phi) + \sigma(x;\phi) \cdot \epsilon;\theta) - x||_2^2 \right]$$

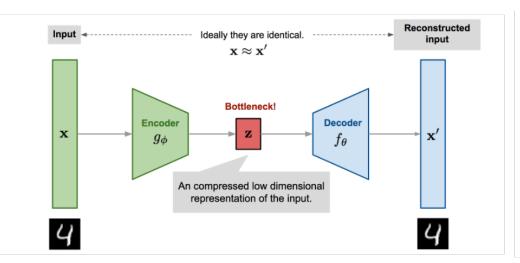
• Monte-Carlo estimate for $\nabla L(\phi)$

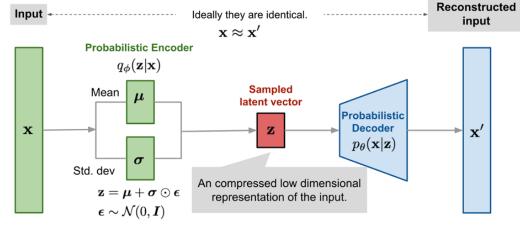
• End-to-end training



VAE vs. AE

- AE: classical unsupervised representation learning method.
- VAL. a probabilistic model of AE
 - AE + Gaussian noise on z
 - ullet KL penalty: L_2 constraint on the latent vector z



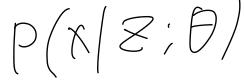


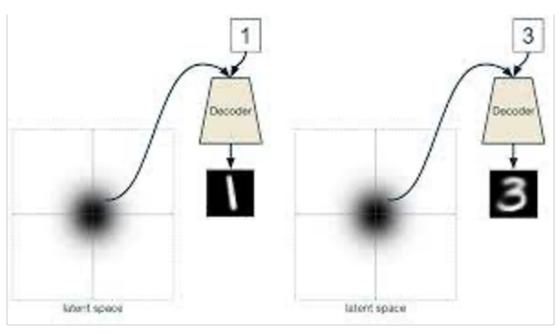
Conditioned VAE

 $P(X)Z;\Theta;Y)$

• Semi-supervised learning: some labels are also available

y: land





conditioned generation

Comments on VAE

- Pros:
 - Flexible architecture
 - Stable training
- Cons:
 - Inaccurate probability evaluation (approximate inference)