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Contrastive learning

Idea:	if	features	are	“semantically”	relevant,	a	“distortion”	of	an	image	should	
produce	similar	features.

Framework:	
• For	every	training	sample,	produce	multiple	augmented	samples	by	applying	
various	transformations.	

• Train	an	encoder	E	to	predict	whether	two	samples	are	augmentations	of	the	
same	base	sample.	

• A	common	way	is	train	 	big	if	 	are	two	augmentations	of	the	
same	sample:	

		

⟨E(x), E(x′ )⟩ x, x′ 

ℓx,x′ = − log ( exp(τ⟨E(x), E(x′ )⟩)
∑x̃ exp(τ⟨E(x), E(x̃)⟩) )

min ∑
x,x′ 	augments	of	each	other

ℓx,x′ 
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Multimodal Contrastive Learning CLIP
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Multimodal Contrastive Learning



Applications of CLIP



Problems about Training CLIP
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Data Filtering
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Data Filtering



Generative Models
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Distribution learning
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Generative model
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Generative model
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Desiderata for generative models

• Probability	evaluation:	given	a	sample,	it	is	computationally	efficient	to	evaluate	
the	probability	of	this	sample.	

• Flexible	model	family:	it	is	easy	to	incorporate	any	neural	network	models.	

• Easy	sampling:	it	is	computationally	efficient	to	sample	a	data	from	the	
probabilistic	model.

Po
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Desiderata for generative models
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Taxonomy of generative models
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Key challenge for building generative models
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Key challenge for building generative models
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Training generative models

• Likelihood-based:	maximize	the	likelihood	of	the	data	under	the	model	(possibly	
using	advanced	techniques	such	as	variational	method	or	MCMC):	

	

• Pros:	
• Easy	training:	can	just	maximize	via	SGD.	
• Evaluation:	evaluating	the	fit	of	the	model	can	be	done	by	evaluating	the	
likelihood	(on	test	data).	

• Cons:	
• Large	models	needed:	likelihood	objectve	is	hard,	to	fit	well	need	very	big	
model.	

• Likelihood	entourages	averaging:	produced	samples	tend	to	be	blurrier,	as	
likelihood	encourages	“coverage”	of	training	data.

max
θ

n

∑
i=1

log pθ(xi)



Training generative models

• Likelihood-free:	use	a	surrogate	loss	(e.g.,	GAN)	to	train	a	discriminator	to	
differentiate	real	and	generated	samples.	

• Pros:	
• Better	objective,	smaller	models	needed:	objective	itself	is	learned	-	can	
result	in	visually	better	images	with	smaller	models.	

• Cons:	
• Unstable	training:	typically	min-max	(saddle	point)	problems.	
• Evaluation:	no	way	to	evaluate	the	quality	of	fit.
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Architecture

• Auto-encoder:	 	
• Encoder:	 	
• Decoder:	 	

• Isomorphic	Gaussian:	
	

• Gaussian	prior:	 	
• Gaussian	likelihood:	 	

• Probabilistic	model	interpretation:	latent	variable	
model.

x → z → x
q(z |x; ϕ) : x → z
p(x |z; θ) : z → x

q(z |x; ϕ) = N(μ(x; ϕ), diag(exp(σ(x; ϕ))))
p(z) = N(0,I )

p(x |z; θ) ∼ N( f(z; θ), I )
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VAE Training

• Training	via	optimizing	ELBO	
• 	
• Likelihood	term	+	KL	penalty	

• KL	penalty	for	Gaussians	has	closed	form.	
• Likelihood	term	(reconstruction	loss):	

• Monte-Carlo	estimation	
• Draw	samples	from	 	
• Compute	gradient	of	 :	

• 	

•

L(ϕ, θ; x) = 𝔼z∼q(z|x;ϕ)[log p(z |x; θ)] − KL (q(z |x; ϕ) | |p(z))

q(z |x; ϕ)
θ

x ∼ N( f(z; θ); I )
p(x) = 1

2π
exp(− 1

2 ∥x − f(z; θ)∥2
2)

Bayesian
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VAE Training

• Likelihood	term	(reconstruction	loss):	
• Gradient	for	 Loss:	 	
• Reparameterization	trick:		

• 	
• 	

	
• Monte-Carlo	estimate	for	 	

• End-to-end	training	

ϕ . L(ϕ) = 𝔼z∼q(z;ϕ) [log p(x |z)]
z ∼ N(μ, Σ) ⇔ z = μ + ϵ, ϵ ∼ N(0,Σ)

L(ϕ) ∝ 𝔼z∼q(z|ϕ) [∥f(z; θ) − x∥2
2]

∝ 𝔼ϵ∼N(0,I) [∥f(μ(x; ϕ) + σ(x; ϕ) ⋅ ϵ; θ) − x∥2
2]

∇L(ϕ)
sample El EN
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VAE vs. AE

• AE:	classical	unsupervised	representation	learning	method.	
• VAR:	a	probabilistic	model	of	AE	

• AE	+	Gaussian	noise	on	 	
• KL	penalty:	 	constraint	on	the	latent	vector	 	

z
L2 z

e



Conditioned VAE

• Semi-supervised	learning:	some	labels	are	also	available	

P X 2 0 y
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Comments on VAE

• Pros:	
• Flexible	architecture	
• Stable	training	

• Cons:	
• Inaccurate	probability	evaluation	(approximate	inference)


