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Contrastive learning

Idea: if features are “semantically” relevant, a “distortion” of an image should
produce similar features.

Framework:

e For every training sample, produce multiple augmented samples by applying
various transformations.

e Train an encoder E to predict whether two samples are augmentations of the
same base sample.

e A common way is train (E(x), E(x")) big if x, x" are two augmentations of the
same sample:

PR exp(7(E(x), E(x")))
X, & Zi exp(t{E(x), E(X)))

min 2 Ly

x,x’ augments of each other



Multimodal Contrastive Learnlng (M5, text)
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Multimodal Contrastive Learning o
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Multimodal Contrastive Learning (L1

Zero-Shot Classification:
* Generate a prompt for
each class
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Multimodal Contrastive Learning

75
Linear Probe CLIP
Results 20
Strong zero-shot and few-shot 05 'Z*ergjphot BiT-M (ImageNet-21K
performance compared with < 60
other models. o s
2 .
Zero-shot performance on %
ImageNet: CLIP = fully §5°‘
supervised ResNet50! < 45
40 A
35 A
30 F—— T r
0 1 2 4 8 16

# of labeled training examples per class



Applications of CLIP

Image Generation
(StyleCLIP [Patashnik et al. 2021]) |

“Emma Stone” “Mohawk hairstyle” “Without makeup” “Cute cat” “Lion” “Gothic church”

Robotics -
(CLIPort [Shridhar et al. 2021])
.

“pack the yoshi figure “pack all the blue and black sneaker
in the brown box” objects in the brown box”




Problems about Training CLIP

Require large amount of carefully curatedw
4 Billion closed-source data used for OpenAl’s CLIP

e How to obtain lots of high-quality data?

One choice: Web-curated data pairs + data filtering



DataComp

A benchmark standardize the training configuration

ImageNet v2 ImageNet-A ImageNet-0 ImageNet-R

o
Training Process: ﬁ . ﬁ @ ‘

Evaluation:

Fllterlng data from a pOOI Of IOW' MNIST MSCOCO ObjectNet Oxford-I'T Pet  Pascal vOC

quality data pairs
Train a CLIP model with a fixed ﬂ n

arChitECture and hyperparameters PatchCamelyon RESISC45 SST2 STL-10 SUN397

Fix total number of training data ‘

seen (1 pass of 4B data = 4 passes LAy
Of 1B data) SVHN Stanford Cars UTKFace WinoGAVIL WildCam

-
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38 Zero-shot downstream tasks




Data Filtering

Distribution-agnostic methods

~+pad W oA

Image-based filtering

e C(Cluster the image embeddings (from a Wmodel) of
training data, and select the groups that contain at least one
embedding from ImageNet-1k

CLIP score filtering
* Filter the data with low CLIP similarity assigned by a pre-trained
CLIP model.

[ CLIP score = firTnageftext J




Data Filtering

Setup:
Total number of training sample seen = 12.8M

Filtering Strategy Dataset ImageNet ImageNet Dist. Shift VTAB Retrieval Average

Size (1 sub-task) (5) (11) 3) (38)

No filtering 12.8M 2.5 3.3 14.5 10.5 13.2
LIP score (30%. reproduced) 3.8M 4.8 5.3 17.1 11.5 15.8
Image-based N CLIP score (45%) 1.9M 4.2 4.6 17.4 10.8 15.5
D? Pruning (image+text, reproduced) 3.8M 4.6 5.2 18.5 11.1 16.1
CLIP score (45%) 5.8M 4.5 5.1 17.9 12.3 16.1

Filtering significantly improves the performance!
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Generative Models




Distribution learning

Training Model Samples (Karras et.al.,
Data(CelebA) 2018)

4 years of progression on Faces

Brundage et al,,
2017

2014 2015 2016 2017

Image credits to Andrej Risteski



Distribution learning

BigGAN, Brock et al ‘18



Distribution learning

Conditional generative model P(zebra images| horse images)

Style Transfer

.;if,f *'ﬁgn

Input Image Monet Van Gogh

Image credits to Andrej Risteski



Distribution learning

Source Real-time Reenactmen
actor

Real-time
reenactment

Reenactment Result




Generative model

Generate

Generative model
of realistic images

Stroke paintings to realistic images
[Meng, He, Song, et al., ICLR 2022]

(e Generate

“Ace of Pentacles” === |  —

Generative model e i

of paintings Language-guided artwork creation
https://chainbreakers.kath.io @RiversHaveWings

Slides credit to Yang Song



Generative model

High
probability
—

Slide credit to Yang Song

A\

Generative model
of traffic signs

Outlier detection
[Song et al., ICLR 2018]

Low
probability




Desiderata fgr generative models
G

e Probability evaluation: given a sample, it is computationally efficient to evaluate

the probability of this sample. («/“\/&4 \(/ (DW\PVLT/ R() CK) Qﬁ (/‘[%#/}/

¢ Flexible model family: it is easy to incorporate any neural network models.

e Easy sampling: it is computationally efficient to sample a data from th \

probabilistic model. P@ S%PJCD KJ»UOW) [ o @ %

LTV VSTV



Desiderata for generative models

Data distribution
(unknown)

High Low. |
probability ~Probability

Generative model

Novel data points

Sampling "3 &"" m
ol 7

Slide credit to Yang Song
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Taxonomy of generative models ‘¢ (2) — %

exM“T
P@ | Direct

GAN

Generative models |

/\

‘,, Explicit density Implicit density

’ Tractable denS|ty | Approxnmate density Markov Chain
GSN
Fully Visible Belief Nets \
- NADE | , ‘/ | ——
- MADE . Variational ‘ - Markov Chain
PixelRNN/CNN L |

Variational Autoencoder Energy models

Change of variables
v (Restricted) Boltzmann machines

models:
- (Nonlinear) ICA
- Normalizing flows

Image credits to Andrej Risteski



Key challenge for building enerative models
diffrbution — 1 (D7 )

Slide credit to Yang Song



Key challenge for building generative models

Inaccurate probability
evaluation
Using restricted neural network models
. Autoregressive models [Bengio & Bengio 2000, van e
den Oord et al. 2016] fam”y
* Normalizing flow models [pinh et al. 2014,

Rezende & Mohamed 2015]

Approximating the normalizing constant

e Variational auto-encoders [kingma & Welling 2014,
Rezende et al. 2014]

* Energy-based models [Ackiey et al. 1985, LeCun et
al. 2006]

« Model the generation process, not the Cannot evaluate

Generative adversarial networks (GANSs) 6
probability distribution [coodtellow et al. 2012]

probabilities

Slide credit to Yang Song



Training generative models

e Likelihood-based: maximize the likelihood of the data under the model (possibly
using advanced techniques such as variational method or MCMC):
o ~ T
max ) log py(x)
i=1

® Pros:
e Easy training: can just maximize via SGD.
¢ Evaluation: evaluating the fit of the model can be done by evaluating the
likelihood (on test data).

e Cons:
e Large models needed: likelihood objectve is hard, to fit well need very big
model.
¢ Likelihood entourages averaging: produced samples tend to be blurrier, as
likelihood encourages “coverage” of training data.



Training generative models

e Likelihood-free: use a surrogate loss (e.g., GAN) to train a discriminator to
differentiate real and generated samples.

® Pros:
e Better objective, smaller models needed: objective itself is learned - can
result in visually better images with smaller models.

e Cons:
e Unstable training: typically min-max (saddle point) problems.
e Evaluation: no way to evaluate the quality of fit.
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Architecture

e Auto-encoder: x - 7 — Xx
e Encoder: g(z|x;¢) : x = 2

e Decoder: p(x|z;60) : z — x /[/ e~N(0,D)
VN T

N
e |somorphic Gaussian: /f

q(z|x; ) = N(u(x; ¢), diag(exp(a(x; $))))
e Gaussian prior: p(z) = N(0,]) ’
e Gaussian likelihood: p(x|z;0) ~ N(f(z;0),1)

i) E

e Probabilistic model interpretation: latent variable
model.
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VAE Trainin
g [;U\ZZ 2l (\C//%

e Training via optimizing ELBO

« L(¢h,0;%) = . pgpllog p(z| x;0)] — KL (q(z| x; ) | | p(2))
e Likelihood term + KL penalty 2>

e KL penalty for Gaussians has closed form. X

e Likelihood term (reconstruction Toss): I
e Monte-Carlo estimation BI/V; e~1\)’((%;D) I
i, g (I
/R,_\I_UQS : 1e1%e)

e Draw samples from g(z
e Compute gradient of &:

o x ~ N(f(z;0);1) No gradient! HEEE) | Sample z
1 |
,px) = exp(——=|lx — f(z; O)|I5) V(7 u(), 2(x))
\/ 27 2 ]
u Net 2 Net
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VAE Training

e Likelihood term (reconstruction loss):
e Gradient for ¢ . Loss: L(¢p) = E__ (.4 [logp(xlz)]
e Reparameterization trick:

X
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o Ee v, [||f(ﬂ(x; ¢)+o(x;p)-€,0) - x”%]
e Monte-Carlo estimate for VL(¢)

sample ¢, -5 en/

e End-to-end training H jt(M( ¢ q?) { 2(/5(1/(») f)/@)
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VAE vs. AE

e AE: classical unsupervised representation learning method.
. VAlﬁa probabilistic model of AE

e AE + Gaussian noise on Z

e KL penalty: L, constraint on the latent vector z

Input - Ideally they are identical. ------------------

X I—>

9e

x~x

Bottleneck!

Encoder .

An compressed low dimensional
representation of the input.

Decoder

fo

Reconstructed
input

Input «------ooooooe e Ideally they are identical. ~ ~--------------------- -
x ~ x
Probabilistic Encoder
q0(z[x)
Mean w Sampled
latent vector
Probabilistic
X > Decoder
po(x|z)
(o)
Std. dev
_ An compressed low dimensional
zZ=p+o0e€ representation of the input.

e~ N(0,I)

Reconstructed
input




Conditioned VAE P (K ) 26 Y)

e Semi-supervised learning: some labels are also available

(120

conditioned generation



Comments on VAE

e Pros:
e Flexible architecture
e Stable training

e Cons:
* |Inaccurate probability evaluation (approximate inference)



