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Contrastive learning

Idea: if features are “semantically” relevant, a “distortion” of an image should 
produce similar features.

Framework:	
• For every training sample, produce multiple augmented samples by applying 
various transformations.	

• Train an encoder E to predict whether two samples are augmentations of the 
same base sample.	

• A common way is train  big if  are two augmentations of the 
same sample:	

 	

⟨E(x), E(x′￼)⟩ x, x′￼

ℓx,x′￼= − log ( exp(τ⟨E(x), E(x′￼)⟩)
∑x̃ exp(τ⟨E(x), E(x̃)⟩) )

min ∑
x,x′￼ augments of each other

ℓx,x′￼



Multimodal Contrastive Learning
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Applications of CLIP



Problems about Training CLIP



DataComp



Data Filtering



Data Filtering



Generative Models
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Generative model
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Desiderata for generative models

• Probability evaluation: given a sample, it is computationally efficient to evaluate 
the probability of this sample.	

• Flexible model family: it is easy to incorporate any neural network models.	

• Easy sampling: it is computationally efficient to sample a data from the 
probabilistic model.
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Taxonomy of generative models
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Key challenge for building generative models
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Training generative models

• Likelihood-based: maximize the likelihood of the data under the model (possibly 
using advanced techniques such as variational method or MCMC):	

	

• Pros:	
• Easy training: can just maximize via SGD.	
• Evaluation: evaluating the fit of the model can be done by evaluating the 
likelihood (on test data).	

• Cons:	
• Large models needed: likelihood objectve is hard, to fit well need very big 
model.	

• Likelihood entourages averaging: produced samples tend to be blurrier, as 
likelihood encourages “coverage” of training data.

max
θ

n

∑
i=1

log pθ(xi)



Training generative models

• Likelihood-free: use a surrogate loss (e.g., GAN) to train a discriminator to 
differentiate real and generated samples.	

• Pros:	
• Better objective, smaller models needed: objective itself is learned - can 
result in visually better images with smaller models.	

• Cons:	
• Unstable training: typically min-max (saddle point) problems.	
• Evaluation: no way to evaluate the quality of fit.



Variational 
Autoencoder



Architecture

• Auto-encoder: 	
• Encoder: 	
• Decoder: 	

• Isomorphic Gaussian:	
	

• Gaussian prior: 	
• Gaussian likelihood: 	

• Probabilistic model interpretation: latent variable 
model.

x → z → x
q(z |x; ϕ) : x → z
p(x |z; θ) : z → x

q(z |x; ϕ) = N(μ(x; ϕ), diag(exp(σ(x; ϕ))))
p(z) = N(0,I )

p(x |z; θ) ∼ N( f(z; θ), I )



VAE Training

• Training via optimizing ELBO	
• 	
• Likelihood term + KL penalty	

• KL penalty for Gaussians has closed form.	
• Likelihood term (reconstruction loss):	

• Monte-Carlo estimation	
• Draw samples from 	
• Compute gradient of :	

• 	

•

L(ϕ, θ; x) = 𝔼z∼q(z|x;ϕ)[log p(z |x; θ)] − KL (q(z |x; ϕ) | |p(z))

q(z |x; ϕ)
θ

x ∼ N( f(z; θ); I )
p(x) =

1

2π
exp(−

1
2

∥x − f(z; θ)∥2
2)



VAE Training

• Likelihood term (reconstruction loss):	
• Gradient for Loss: 	
• Reparameterization trick: 	

• 	
• 	

	
• Monte-Carlo estimate for 	

• End-to-end training	

ϕ . L(ϕ) = 𝔼z∼q(z;ϕ) [log p(x |z)]
z ∼ N(μ, Σ) ⇔ z = μ + ϵ, ϵ ∼ N(0,Σ)

L(ϕ) ∝ 𝔼z∼q(z|ϕ) [∥f(z; θ) − x∥2
2]

∝ 𝔼ϵ∼N(0,I) [∥f(μ(x; ϕ) + σ(x; ϕ) ⋅ ϵ; θ) − x∥2
2]

∇L(ϕ)



VAE vs. AE

• AE: classical unsupervised representation learning method.	
• VAR: a probabilistic model of AE	

• AE + Gaussian noise on 	
• KL penalty:  constraint on the latent vector 	

z
L2 z



Conditioned VAE

• Semi-supervised learning: some labels are also available	



Comments on VAE

• Pros:	
• Flexible architecture	
• Stable training	

• Cons:	
• Inaccurate probability evaluation (approximate inference)


