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Contrastive learning

Idea: if features are “semantically” relevant, a “distortion” of an image should
produce similar features.

Framework:

e For every training sample, produce multiple augmented samples by applying
various transformations.

e Train an encoder E to predict whether two samples are augmentations of the
same base sample.

e A common way is train (E(x), E(x")) big if x, x" are two augmentations of the
same sample:

xx — — 108 -
’ 2. exp(r(E(x), E(X)))
min 4 o

x,x’ augments of each other



Multimodal Contrastive Learning
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Multimodal Contrastive Learning

Loss function
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Multimodal Contrastive Learning

Zero-Shot Classification:
* Generate a prompt for
each class

A photo of

a {object}.
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Multimodal Contrastive Learning
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Applications of CLIP

Image Generation
(StyleCLIP [Patashnik et al. 2021]) |

“Without makeup” “Cute cat” “Gothic church”

-~
Y
N

“pack the yoshi figure “pack all the blue and black sneaker
in the brown box” objects in the brown box”

“Emma Stone”

“Mohawk hairstyle”

Robotics -

(CLIPort [Shridhar et al. 2021])




Problems about Training CLIP

Require large amount of carefully curated image-text pairs
4 Billion closed-source data used for OpenAl’s CLIP

e How to obtain lots of high-quality data?

One choice: Web-curated data pairs + data filtering



DataComp

Training Process:

Evaluation: -
38 Zero-shot downstream tasks - B

A benchmark standardize the training configuration

ImageNet v2 ImageNet-A ImageNet-O ImageNet-R

2 I e L

MNIST MSCOCO ObjectNet  Oxford-II'T Pet  Pascal VOC
quality data pairs =
Train a CLIP model with a fixed ﬂ E u m
architecture and hyperparameters ,..c..eyon resscs  ssr 10 sunsss
Fix total number of training data '
seen (1 pass of 4B data = 4 passes Ry
of 1B data) SVHN  Stonford Cars  UTKFace  WinoGAVIL  iWldCam

Filtering data from a pool of low-




Data Filtering

Distribution-agnostic methods

Image-based filtering

* Cluster the image embeddings (from a pre-trained CLIP model) of
training data, and select the groups that contain at least one
embedding from ImageNet-1k

CLIP score filtering
* Filter the data with low CLIP similarity assigned by a pre-trained
CLIP model.

[ CLIP score = ﬁ};ageftext J




Data Filtering

Setup:

Total number of training sample seen =12.8M

Filterine Strate Dataset ImageNet ImageNet Dist. Shift VTAB Retrieval Average
g gy Size (1 sub-task) (5) (11) 3) (38)
No filtering 12.8M 2.5 3.3 14.5 10.5 13.2
ICLIP score (30%, reproduced) 3.8M 4.8 5.3 17.1 11.5 158 |
Image-based M CLIP score (45%) 1.9M 4.2 4.6 17.4 10.8 15.5
D? Pruning (image+text, reproduced) 3.8M 4.6 5.2 18.5 11.1 16.1
CLIP score (45%) 5.8M 4.5 5.1 17.9 12.3 16.1 |

Filtering significantly improves the performance!



Generative Models




Distribution learning

Training Model Samples (Karras et.al.,
Data(CelebA) 2018)

4 years of progression on Faces

Brundage et al.,
2017

2014 2015 2016 2017

Image credits to Andrej Risteski



Distribution learning

N, Brock et al ‘18

BigGA



Distribution learning

Conditional generative model P(zebra images| horse images)

Input Image Monet Van Gogh

Image credits to Andrej Risteski



Distribution learning

Source Real-time Reenactmen
actor

Real-time
reenactment

Reenactment Result




Generative model

Generate
— % =3

Generative model
of realistic images

—

Stroke paintings to realistic images
[Meng, He, Song, et al., ICLR 2022]

(e Generate

“Ace of Pentacles” === \ —

Generative model T ol
of paintings Language-guided artwork creation
https://chainbreakers.kath.io @RiversHaveWings

Slides credit to Yang Song



Generative model

High P Low
probability probability
— y

Generative model
of traffic signs

Outlier detection
[Song et al., ICLR 2018]

Slide credit to Yang Song



Desiderata for generative models

e Probability evaluation: given a sample, it is computationally efficient to evaluate
the probability of this sample.

¢ Flexible model family: it is easy to incorporate any neural network models.

e Easy sampling: it is computationally efficient to sample a data from the
probabilistic model.



Desiderata for generative models

Data distribution
(unknown)

High Low_ |
probability  Probability

Generative model

Novel data points

Sampling &N;I m
’ﬂ' 8-

Slide credit to Yang Song



Taxonomy of generative models

Direct

Generative models

/\

Explicit density

Implicit density

T

Tractable density

GAN

\

Approximate density

Fully Visible Belief Nets

NADE
MADE
PixelRNN/CNN

Change of variables
models:

(Nonlinear) ICA

- Normalizing flows

Markov Chain

L

Variational

Markov Chain

Variational Autoencoder

Energy models

GSN

(Restricted) Boltzmann machines

Image credits to Andrej Risteski




Key challenge for building generative models

e.f@ (X)

?-;: = pe(x)M

\_w -t

Normalizing constant

Slide credit to Yang Song



Key challenge for building generative models

Approximating the normalizing constant

* Variational auto-encoders [kingma & Welling 2014, Inaccurate probability
Rezende et al. 2014] evaluation
* Energy-based models [ackiey et al. 1985, LeCun et

al. 2006]

Using restricted neural network models

° Autoregressive models [Bengio & Bengio 2000, van Restricted model
den Oord et al. 2016] fam”y
* Normalizing flow models [pinh et al. 2014,

Rezende & Mohamed 2015]

- Model the generation process, not the Cannot evaluate

Generative adversarial networks (GANs) 6
probability distribution (coodteliow et al. 2014]

probabilities

Slide credit to Yang Song



Training generative models

e Likelihood-based: maximize the likelihood of the data under the model (possibly
using advanced techniques such as variational method or MCMC):

max lo X;
p le gpe( l)

® Pros:
e Easy training: can just maximize via SGD.
¢ Evaluation: evaluating the fit of the model can be done by evaluating the
likelihood (on test data).

e Cons:
e Large models needed: likelihood objectve is hard, to fit well need very big
model.
e Likelihood entourages averaging: produced samples tend to be blurrier, as
likelihood encourages “coverage” of training data.



Training generative models

e Likelihood-free: use a surrogate loss (e.g., GAN) to train a discriminator to
differentiate real and generated samples.

® Pros:
e Better objective, smaller models needed: objective itself is learned - can
result in visually better images with smaller models.

e Cons:
e Unstable training: typically min-max (saddle point) problems.
¢ Evaluation: no way to evaluate the quality of fit.



Variational
Autoencoder




Architecture

e Auto-encoder:x - 7 = x
e Encoder: g(z|x;¢) : x = 2
e Decoder: p(x|z;0) : z = x

e |somorphic Gaussian:

q(z|x; @) = N(u(x; ¢), diag(exp(o(x; ¢))))

e Gaussian prior: p(z) = N(0,I)

e Gaussian likelihood: p(x|z;0) ~ N(f(z;0),1)

e Probabilistic model interpretation: latent variable
model.
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VAE Training

* Training via optimizing ELBO

« L(¢p,0;%) = E,_ 1 gpllog p(z| x;0)] = KL (q(z|x; ) | | p(2))

e Likelihood term + KL penalty

e KL penalty for Gaussians has closed form.
e Likelihood term (reconstruction loss):
e Monte-Carlo estimation

X

e~N(O0, D)ﬁél-)
T

e Draw samples from ¢g(z | x; ¢) 0 }_ Secoder
e Compute gradient of 0: r
e x ~ N(f(z;0);1) No gradient! NN | sample 2
1 1
px) = exp(——|lx — f(z; O)|I3) I ) 2
¢ \/2x 2 i f —
i Net X Net
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VAE Training

e Likelihood term (reconstruction loss):
e Gradient for ¢ . Loss: L(¢p) = E. i) [logp(x|z)]
e Reparameterization trick: X
ez~ Nu,2) o z=u+ee~ N®OZX) NOD%JL
o L) & Eyy 17z 6) = xI12] D
o E._yon [If(u(x; @) + o(x; ) - :0) —xlI3]  [r@e)

} Decoder

e Monte-Carlo estimate for VL(¢) ‘ Sample z
N (z; u(x), Z(x))
e End-to-end training 1 Let z IIlet ]
- Encode
Neural Net

I

X




VAE vs. AE

e AE: classical unsupervised representation learning method.
e VAR: a probabilistic model of AE

e AE + Gaussian noise on 7

e KL penalty: L, constraint on the latent vector 7

Input <o Ideally they are identical. ------------------ >

X —»

9¢

x~x

Bottleneck!

Encoder .

An compressed low dimensional
representation of the input.

Decoder

fo

Reconstructed
input

Input <o Ideally they are identical. ~ ~----------------oooo- -
x~x
Probabilistic Encoder
q4(2[x)
Mean w Sampled
latent vector
Probabilistic
X 3> Decoder
po(x|2)
g
Std. dev
. An compressed low dimensional
z=pt+to0e representation of the input.

e~ N(0,I)

Reconstructed
input




Conditioned VAE

e Semi-supervised learning: some labels are also available

conditioned generation



Comments on VAE

® Pros:
¢ Flexible architecture
e Stable training

e Cons:
e Inaccurate probability evaluation (approximate inference)



