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Machine Translation

e Before 2014: Statistical Machine Translation (SMT)
e Extremely complex systems that require massive human efforts
e Separately designed components
e A |ot of feature engineering
e Lots of linguistic domain knowledge and expertise

e Before 2016:
e Google Translate is based on statistical machine learning

e What happened in 20147
e Neural machine translation (NMT)



Sequence to Sequence Model

e Neural Machine Translation (NMT)
e Learning to translate via a single end-to-end neural network.

e Source language sentence X, target language sentence Y = f(X; 0)

e Sequence to Sequence Model (Seq2Seq, Sutskever et al.,

e Two RNNs: f, .andf,,. M 7 ><
e Encoderf, . BV\{MW)W/ LVZ 7

enc:
e Takes X as input, and output the initial hidden state for decoder
[ [ . m
e Can use bidirectional RNN

» Decoder f,,: ;}4
o It takes in the hidden state from f,

enc
e Can use autoregressive Ianguage model
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Sequence to Sequence Model
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The sequence-to-sequence model
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Training Sequence to Sequence Model
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e Collect a huge paired dataset and train it end-to-end via BPTT Pl/@éﬁ ﬁ’()%
e Loss induced by MLE P(Y | X) = P(Y | f,, (X)) -
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Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.




Deep Sequence to Sequence Model

e Stacked seg2seq model

Translation
generated
Encoder:
Builds up } Decoder
sentence
meaning
Source Feeding in
last word

sentence



Machine Translation

e 2016: Google switched Google Translate from SMT to NMT
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Alighment

e Alignment: the word-level correspondence between X and Y
e Can have complex long-term dependencies
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Issue in Seq2Seq

e Alignment: the word-level correspondence between X and Y
e The information bottleneck due to the hidden state &
e We want each Y, to also focus on some X; that it is aligned with

Encoding of the
source sentence.
This needs to capture all Target sentence (output)
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Seq2Seq with Attention

e NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, '15)
e Coreidea:

e When decoding Y,, consider both hidden states and alighment:
e Hidden state: i, =f,,.(Y,.,)

e Alignment: connect to a portion of X /V /

. - b

e When portion of X to focus on? X v
o Learn a softmax weight over X: attention distribution P,,, - {)- - v

ot X; | 1) how muc attentlcdzr;(dt(gl E}{«t@o” word X.

, Attention output 1, = Zfenc(Xl- | Xici) - Po(Xi | )

o Use h*%and h,,, to compute Y, fﬁ( L)J( | hdﬂ)’/) \({
o - doyle 1V] J




Seq2Seq with Attention

dot product
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Seq2Seq with Attention

dot product
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Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention

de ¢
hy

QCHU/ 7L On this decoder timestep, we’re
mostly focusing on the first
{ / encoder hidden state (he”)

Take softmax to turn the scores
into a probability distribution
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Seq2Seq with Attention

hatr

Attention Use the attention distribution to take a
output weighted sum of the encoder hidden
states.

The attention output mostly contains
information from the hidden states that
received high attention.
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Seq2Seq with Attention

Attention
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Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention

Summary
e Input sequence X, encoder f,, ., and decoder f,,.

e fou.(X) produces hidden states 2", h;", ..., hy'*
e On time step ¢, we have decoder hidden state 7,
« Compute attention score ¢; = h,' h?"™
e Compute attention distribution a; = P_,(X;) = softmax(e;)
, Attention output: A, = Z o;h "
i

o Y, ~ glh, <1 0)

e Sample an output using both &, and /¢



Attention

e |t significantly improves NMT.

e |t solves the bottleneck problem and the long-term dependency issue.
e Also helps gradient vanishing problem.
e Provides some interpretability I

e Understanding which word the RNN encoder focuses on a

.
e Attention is a general technique entarte :E-

e Given a set of vector values V; and vector query g

e Attention computes a weighted sum of values depending on ¢g

with

hit
me
a

pie

-

Other use cases:

e Attention can be viewed as a module.

* In encoder and decoder (more on this later)
e A representation of a set of points

e Pointer network (Vinyals, Forunato, Jaitly "15)
e Deep Sets (Zaheer et al., "17)
e Convolutional neural networks

e To include non-local information in CNN (Non-local network, "18)



Attention

e Representation learning:
e A method to obtain a fixed representation corresponding to a query g from

an arbitrary set of representations {V}
e Attention distribution: a; = softmax(f(v;, q))

, Attention output: v, = 2 a;V;
i

e Attent variant: f(v;, q)
e Multiplicative attention: f(v;, ) = q' Wh;, W is a weight mattrix
e Additive attention: f(v;, q) = uTtanh(lei + W,q)
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TVOMJ(UVW(?V
Attention is all you need (Vsawani ’17)

e A pure attention-based architecture for sequence modeling
g rE!SQ_E&ISLDJ—EaI;éalI! animal

didn’t

didn’t

e Basic component: self-attention, ¥ = f¢,(X; 0) s s
e X, uses attention on entire X sequence seet sreet
e Y, computed from X, and the attention output s was

e Computing Y, . e

e Key k, value v, query ¢, from X,

° (kza Vi qt) — gl(Xt; 9) ’ F ’ ,

self-attention

e Attention distribution a, ; = softmax(thkj) ky @101 ky @2 v2 ks 4 vs  kp qr oy

. IR A i P
. Attention output out, = 2 a Vi | K

séff—attention

J ki a1 vi ky qu v, ks q3 v3 kr qr vr
o Y, = gy(out; 0) ) S D S '
oo w wr
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Issues of Vanilla Self-Attention

e Attention is order-invariant

e Lack of non-linearities
e All the weights are simple weighted average

e Capability of autoregressive modeling
e |In generation tasks, the model cannot “look at the future’
e c.g. Text generation:
e Y, can only depend on X, _,

e But vanilla self-attention requires the entire sequence

)



Position Encoding

e Vanilla self-attention
¢ (kt, Vt, %) — gl(Xp 8)

« ;= softmax(thkj)

. Attention output out, = Z Q Vi

J
e |dea: position encoding:

e p;: an embedding vector (feature) of position i
® (kp Vp %) — gl([Xtapt]; 9)

e In practice: Additive is sufficient: k, < l}t +pnq, < 4, + pp vy ‘%Pti
(ki 7,3, = 81(X;; 0)

e p,is only included in the first layer



(i, 05
Position Encoding

p, design 1: SinGsoidal position representation

® Pros:
e simple
e naturally models “relative position”
e Easily applied to long sequences
e Cons:
e Not learnable
e Generalization poorly to sequences longer than training data (71 /*()Jr

T T
£l LY

Position

Heatmap of plij = l

/sin(i/100002*1/d)\
cos(i /100002*5/01)
pPi = * L

d
sin(i/10000%2/%)
2+2 /4
\cos(i/lOOOO 2 )/

Dimension

Index in the sequence



Position Encoding

p, design 2: Learned representation

e Assume maximum length L, learn a matrix p € IRdXiL,/pt is a column of p

e Pros:

e Flexible

e Learnable and more powerful
e Cons:

e Need to assume a fixed maximum length L
e Does not work at all for length above L

~vdaly yevete P 0D ad - Neavy

D PE . veutke oafi



Combine Self-Attention with Nonlinearity

e Vanilla self-attention
e No element-wise activation (e.g., ReLU, tanh)
e Only weighted average and softmax operator

e Fix:
e Add an MLP to process out;
o mi — MLP(Outl) — WzReLU(WIOMtl + bl) + b2
e Usually do not put activation layer before softmaax

- ey
M“%W‘/ S

self-attention
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self-attention
. . . LN .
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Masked Attention (ﬂ,myv(

e In language model decoder: P(Y,| X;_,)

e out, cannot look at future X,

e Masked attention

« Computee; ; = qiTkj as usuall

e Mask out ¢, ; by setting ¢;,; = — o0

&Y
ee®O(l—M)« —0c0 Uq; mx=) O Ui Y2 Ys  Ur  Us  Ug
e M is a fixed 0/1 mask matrix
e Then compute a; = softmax(e;)

raw attention weights mask

e Remarks:
e M = 1 for full self-attention
e Set M for arbitrary dependency ordering




Transformer

Transformer-based sequence-to-sequence modeling

[predictions!]

— t
Decoder
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Key-query-value attention

e Obtain g, v,, k, from X,
e q, = WiX;v, = WX, k, = W*X, (position encoding omitted)
e W4, WY, WK are learnable weight matrices

— LAY —
, ;. ; = softmax(g; k;); out; = Z a; ;v;
k

e Intuition: key, query, and value can focus on different parts of input

All pairs of
attention scores!

XQ = XQKTXT
KT XT E IRTXT

P

softmax| xQKTXT | xy =
output € R7*4



Multi-headed attention

e Standard attention: single-headed attention
e X. € R Q,K,VeR™
e We only look at a single position j with
hghaw
e What if we want to look at different j for
different reasons?

e |dea: define & separate attention heads

e /1 different attention distributions, keys,
values, and queries

+ Q). K/ V/ €R™for1 < £ <h

£ _ NTLEYe 1yt — £yl
L= softmax((g; ) k] ); out; = Z % Vi
J

#Params Unchanged!

Single-head attention
(just the query matrix)

X XQ%

Q =

Multi-head attention

(just two heads here)

X XQ, X0,
Q102 =
% 4=




Multi-headed attention

e Standard attention: single-headed attention
e X. € R Q,K,VeR™
e We only look at a single position j with
hghaw
e What if we want to look at different j for
different reasons?

e |dea: define & separate attention heads

e /1 different attention distributions, keys,
values, and queries

e OV, KVl € R for 1 <?¢<h

r NTLEYe 1yt — £yl
L= softmax((g; ) k] ); out; = Z % Vi
J

Utterance Level Representation
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Transformer

Transformer-based sequence-to-sequence model

e Basic building blocks: self-attention
e Position encoding
e Post-processing MLP
e Attention mask

e Enhancements:
e Key-query-value attention
e Multi-headed attention
e Architecture modifications:
e Residual connection
e Layer normalization

/e

r InC

|

Output
Probabilities
~
(| Add & Norm
Feed
Forward
1 R | Add & Norm ;
LI Multi-Head
Feed Attention
Forward ) Nx
—
Add & Norm
f->| Add & Norm | e
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Attention Attention
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e J \_ —
Positional @_é ) ¢ Positional
Encoding y Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)



Transformer

Machine translation with transformer

BLEU Training Cost (FLOPs)

Model

EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 -10%°
GNMT + RL [38] 24.6 39.92 2.3-10" 14-.10%
ConvS2S [9] 25.16  40.46 9.6-10"® 1.5-10%
MoE [32] 26.03  40.56 2.0-101% 1.2.10%0
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 2630  41.16 1.8-10%  1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 7.7-1017  1.2-10%
Transformer (base model) 27.3 38.1 3.3.10'%

Transformer (big) 28.4 41.8 2.3.101
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Transformer

e Limitations of transformer: Quadratic computation cost
e Linear for RNNs

e Large cost for large sequence length, e.g., L > 10%

¥ (ade

e Follow-ups:
e Large-scale training: transformer-XL; XL-net (‘20)
e Projection tricks to O(L): Linformer ('20)
e Math tricks to O(L): Performer (‘20)
e Sparse interactions: Big Bird (‘20)
e Deeper transformers: DeepNet ('22)



Transformer for Images

e Vision Transformer ('21)
e Decompose an image to 16x16 patches and then apply transformer encoder

Transformer Encoder

A

Vision Transformer (ViT)

L x
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Transformer for Images

e Swin Transformer ('21)

e Build hierachical feature maps at different resolution
e Self-attention only within each block
e Shifted block partitions to encode information between blocks

segmentation o
classification  detection ... classification
A

// / //l6>< ///::/ :/7/,16><

ozl /[7///

Layer 1 Layer 1+1
: A local window to
perform self-attention
L]
3 ¥ . A patch

L e — 26
W77 74 A
W=7 /A

(a) Swin Transformer (ours) (b) VIiT

Figure 2. An illustration of the shifted window approach for com-



CNN vs. RNN vs. Attention

Self-Attention

cat sat on the mat

The

Recurrence

cat sat on the mat

The

Convolution

cat sat on the mat
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Summary

e Language model & sequence to sequence model:
e Fundamental ideas and methods for sequence modeling

e Attention mechanism
e So far the most successful idea for sequence data in deep learning
e A scale/order-invariant representation
e Transformer: a fully attention-based architecture for sequence data
e Transformer + Pretraining: the core idea in today’s NLP tasks

e LSTM is still useful in lightweight scenarios



Other architectures




Graph Neural Networks

Adjacency Feature
matrix nxXn matrix nxd

PAPT PX
arbitrary ordering of nodes



Graph Neural Networks




Geometric Deep Learning
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