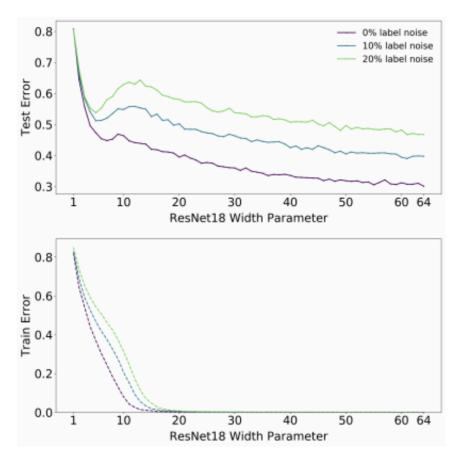


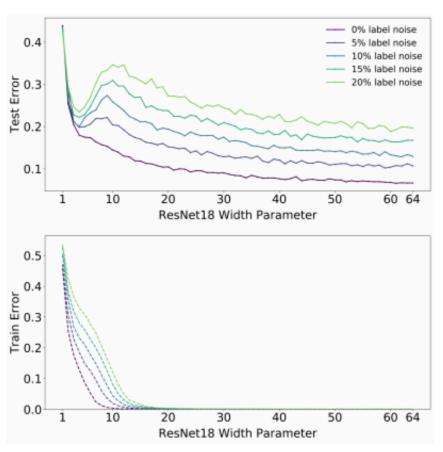
Belkin, Hsu, Ma, Mandal '18

- There are cases where the model gets bigger, yet the (test!) loss goes down, sometimes even lower than in the classical "under-parameterized" regime.
- Complexity: number of parameters.

Widespread phenomenon, across architectures (Nakkiran et al. '19):

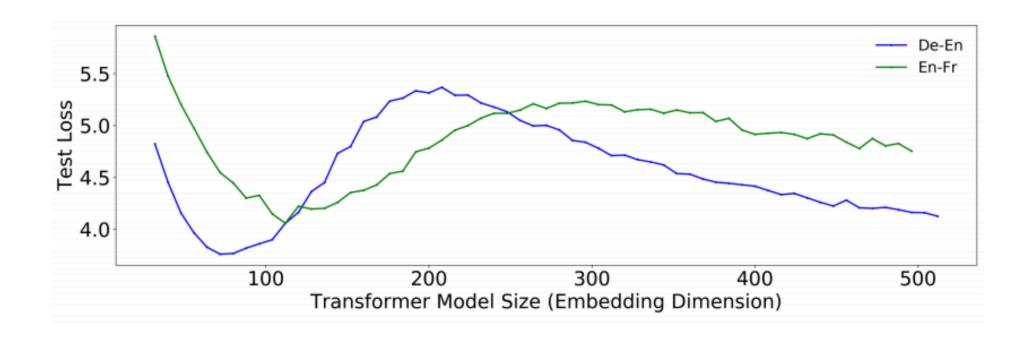


(a) CIFAR-100. There is a peak in test error even with no label noise.

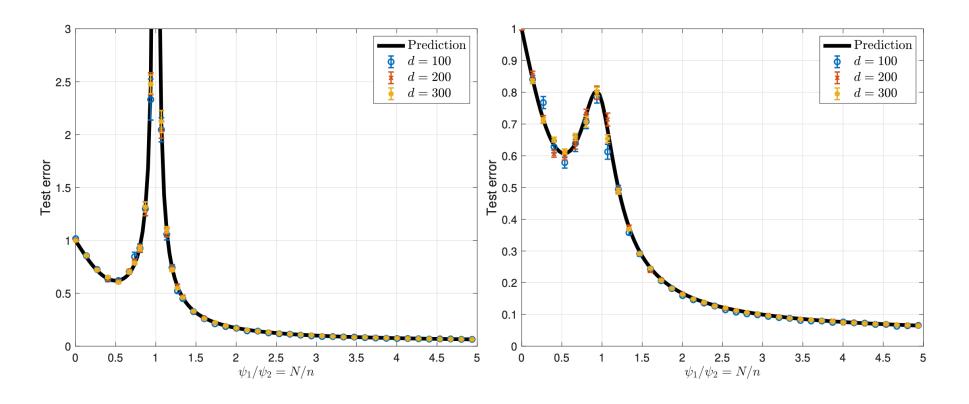


(b) **CIFAR-10.** There is a "plateau" in test error around the interpolation point with no label noise, which develops into a peak for added label noise.

Widespread phenomenon, across architectures (Nakkiran et al. '19):



Widespread phenomenon, also in kernels (can be formally proved in some concrete settings [Mei and Montanari '20]), random forests, etc.



Also in other quantities such as train time, dataset, etc (Nakkiran et al. '19):

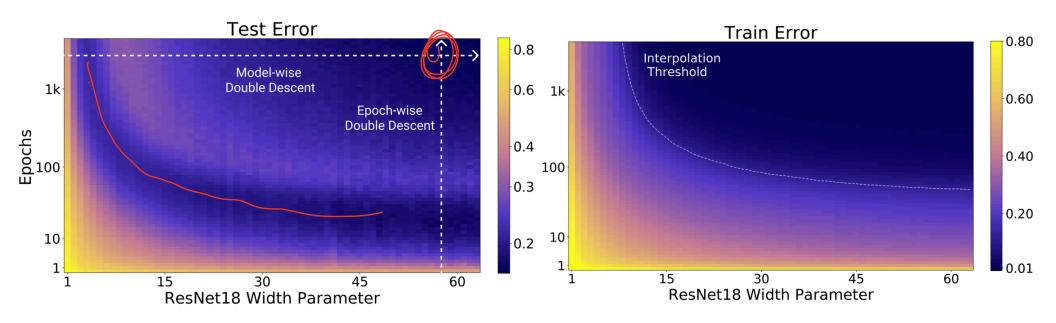
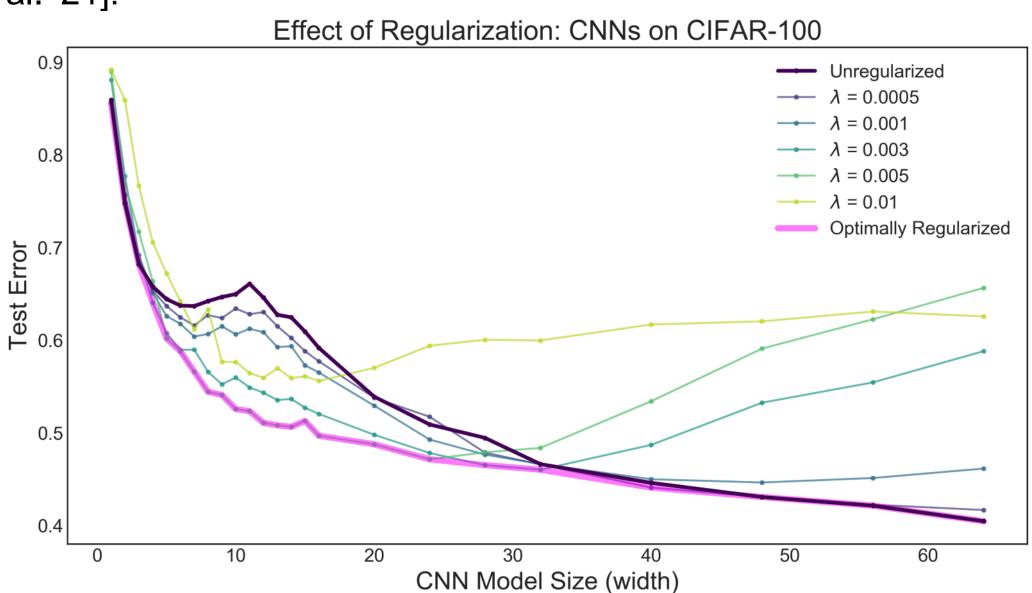


Figure 2: **Left:** Test error as a function of model size and train epochs. The horizontal line corresponds to model-wise double descent—varying model size while training for as long as possible. The vertical line corresponds to epoch-wise double descent, with test error undergoing double-descent as train time increases. **Right** Train error of the corresponding models. All models are Resnet18s trained on CIFAR-10 with 15% label noise, data-augmentation, and Adam for up to 4K epochs.

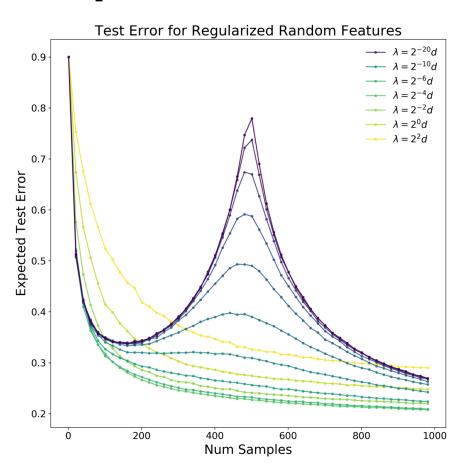
 $\|W\|_2^2$

Optimal regularization can mitigate double descent [Nakkiran et al. '21]:

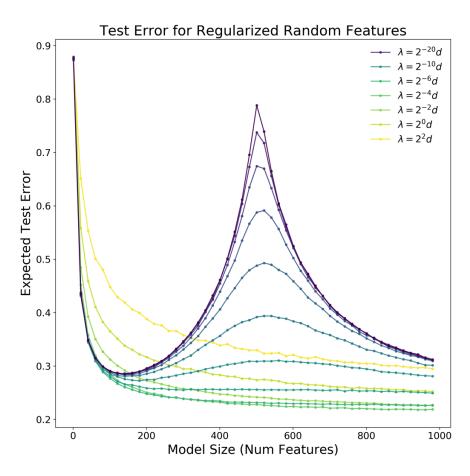


N=d X:4xd (XTX) XTY

Optimal regularization can mitigate double descent [Nakkiran et al. '21]:



a) Test Classification Error vs. Number of Training Samples.

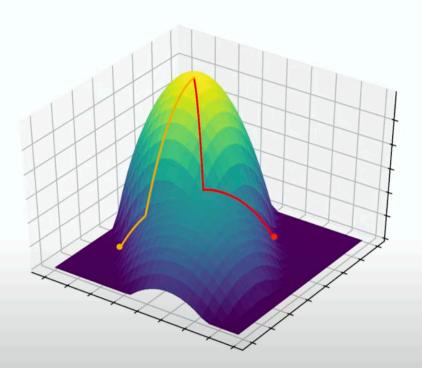


(b) Test Classification Error vs. Model Size (Number of Random Features).

Implicit Regularization

Different optimization algorithm

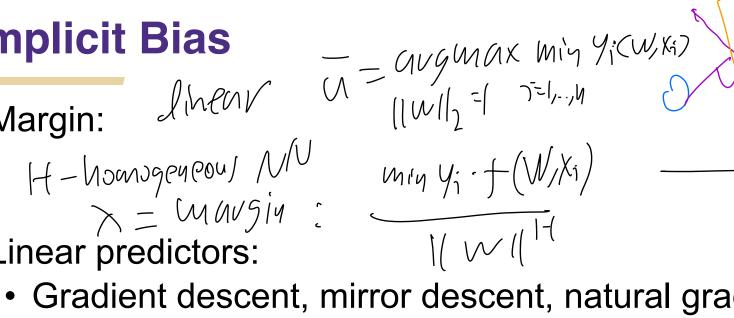
- → Different bias in optimum reached
 - → Different Inductive bias
 - → Different generalization properties



Implicit Bias

Margin:

• Linear predictors:



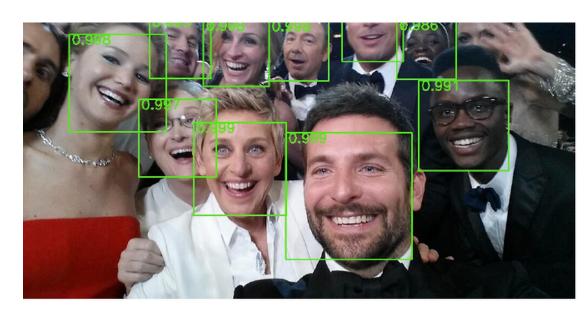
 Gradient descent, mirror descent, natural gradient descent, steepest descent, etc maximize margins with respect to different norms.

- Non-linear:
 - Gradient descent maximizes margin for homogeneous neural networks.
 - Low-rank matrix sensing: gradient descent finds a low-rank solution. [XXT — A [] F VANC (A) = (C)

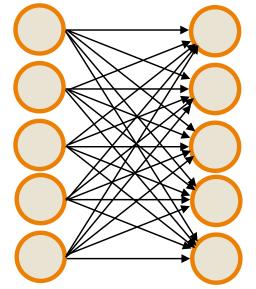
Convolutional Neural Networks

Neural Network Architecture

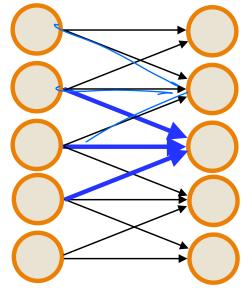
Objects are often localized in space so to find the faces in an image, not every pixel is important for classification—makes sense to drag a window across an image.



Similarly, to identify edges or other local structure, it makes sense to only look at local information



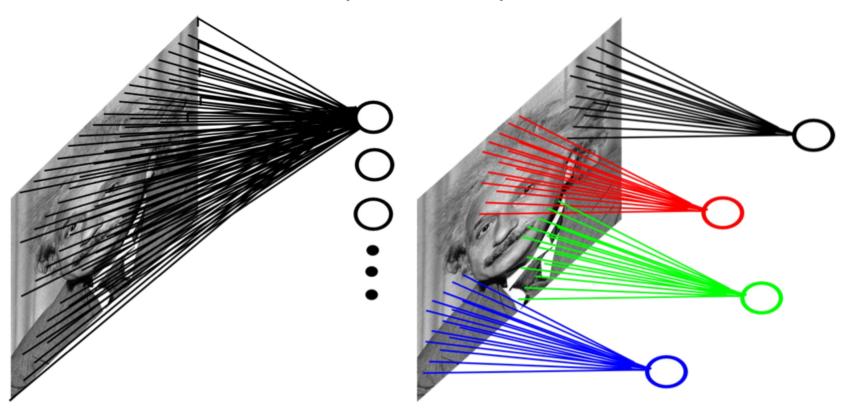
VS.



2d Convolution Layer

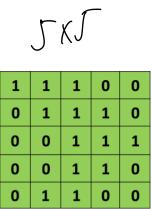
Example: 200x200 image

- Fully-connected, 400,000 hidden units = 16 billion parameters
- Locally-connected, 400,000 hidden units 10x10 fields = 40 million params
- Local connections capture local dependencies



Convolution of images (2d convolution)

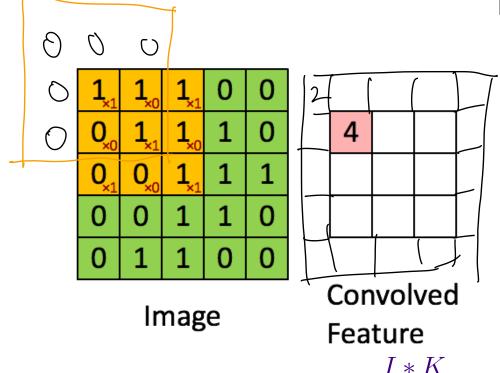
$$(I * K)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$



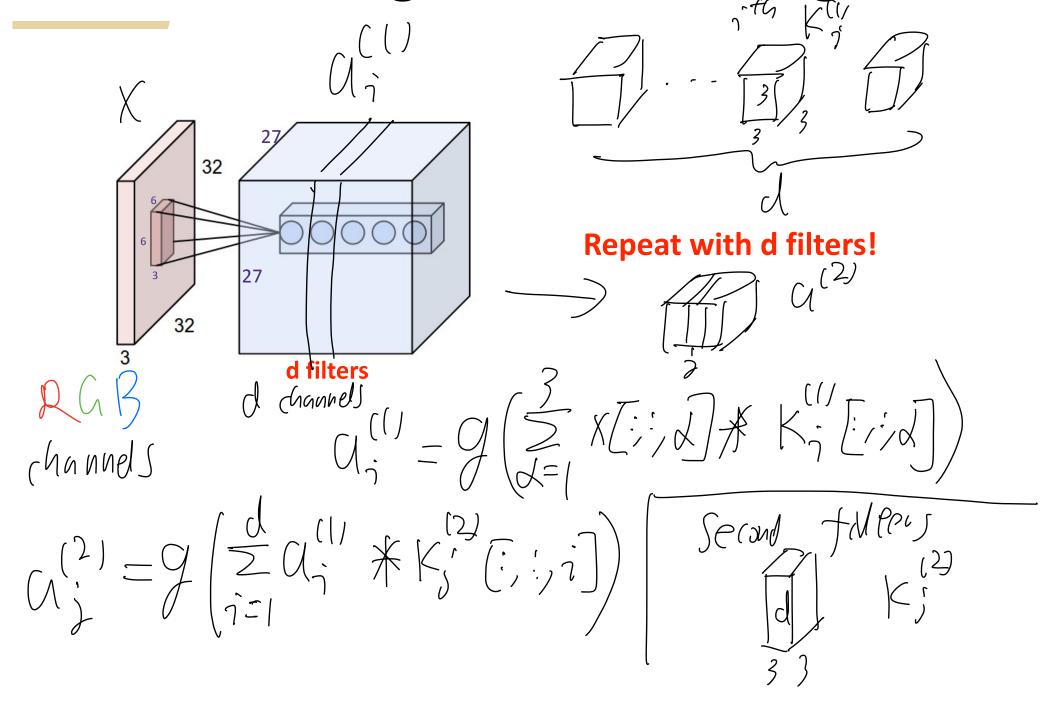
•	3 X	5
1	0	1
0	1	0

Image I

	.	T 7
H'i	lter	K

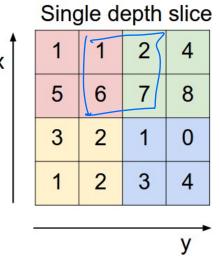


Stacking convolved images



Pooling

Pooling reduces the dimension and can be interpreted as "This filter had a high response in this general region"



a counse pooling

max pool with 2x2 filters and stride 2

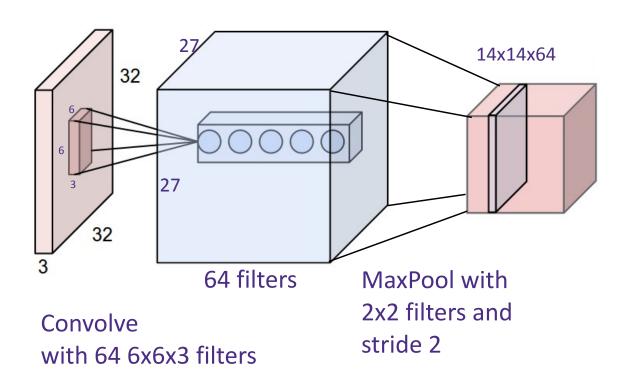
6	8
3	4

27x27x64

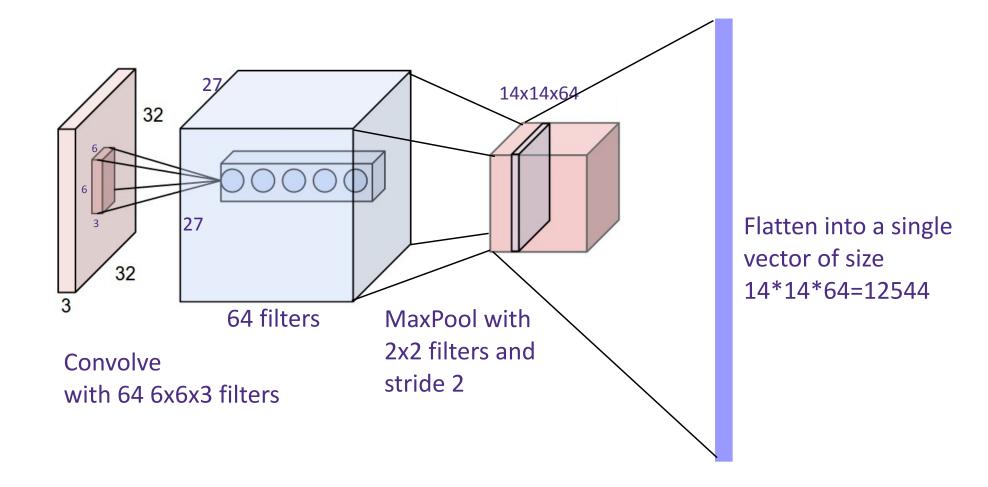
pool

pool

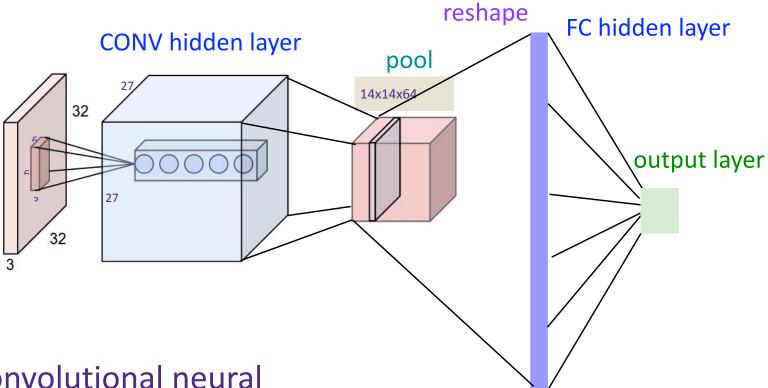
Pooling Convolution layer



Flattening

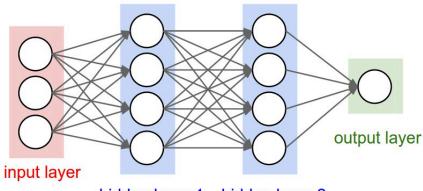


Training Convolutional Networks



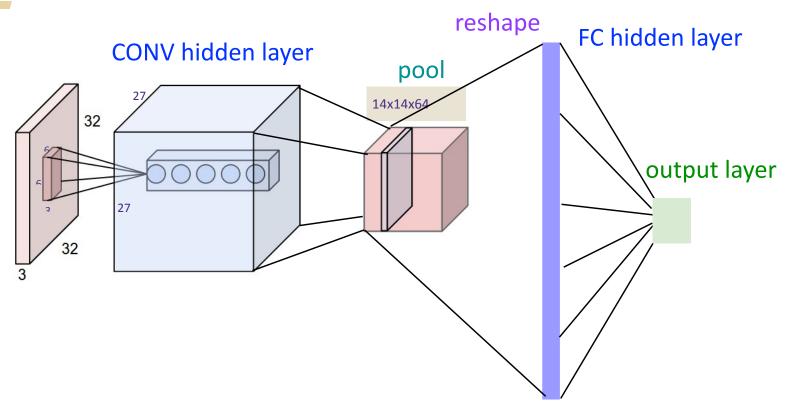
Recall: Convolutional neural networks (CNN) are just regular fully connected (FC) neural networks with some connections removed.

Train with SGD!

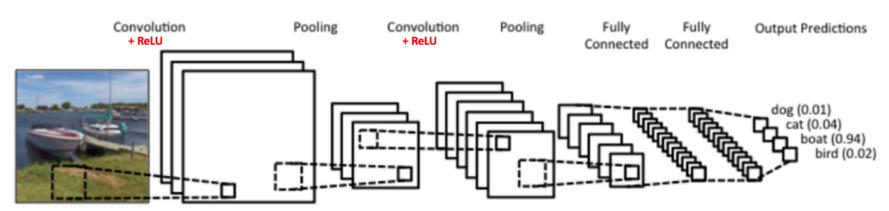


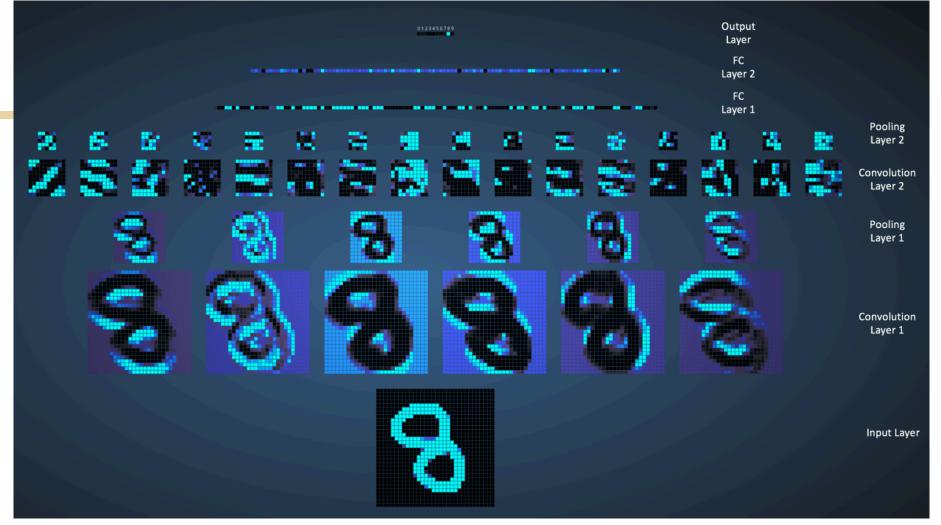
hidden layer 1 hidden layer 2

Training Convolutional Networks

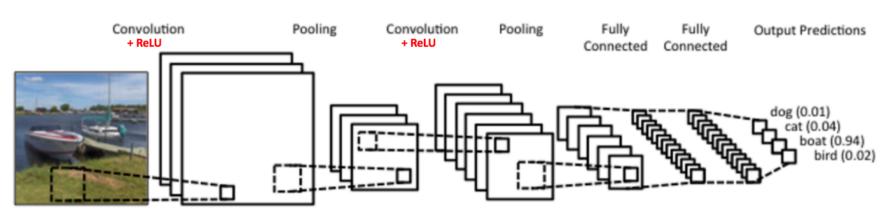


Real example network: LeNet





Real example network: LeNet



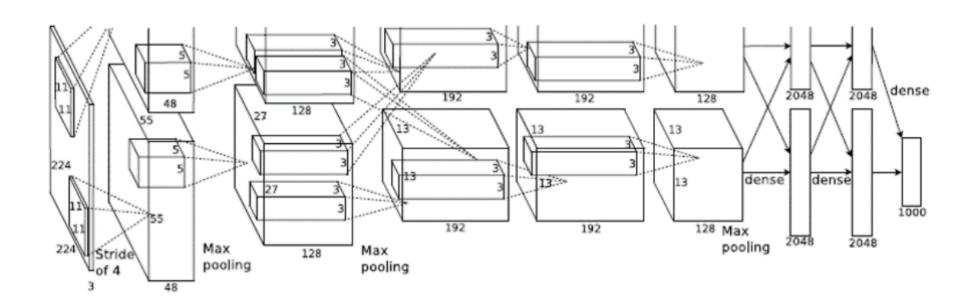
Famous CNNs

ImageNet Dataset

~14 million images, 20k classes

Deng et al. "Imagenet: a large scale hierarchical image database" '09

Breakthrough on ImageNet: ~the beginning of deep learning era



Krizhevsky, Sutskever, Hinton "ImageNet Claasification with Deep Convolutional Neural Networks", NIPS 2012.

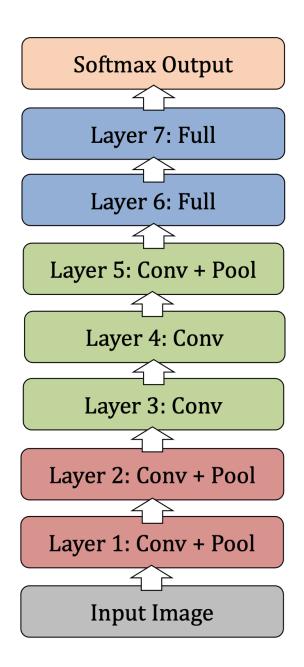
8 layers, ~60M parameters

Top5 error: 18.2%

Jussina 40%

Techniques used:

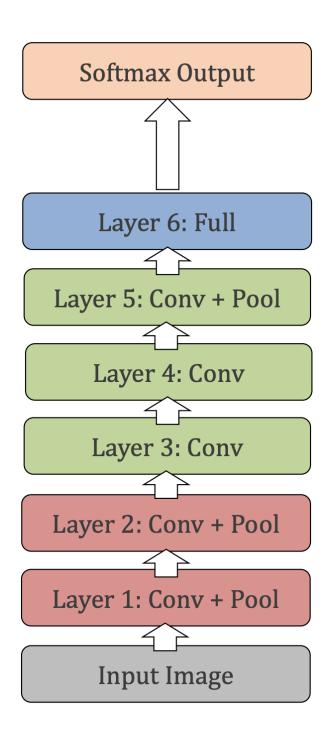
ReLU activation, overlapping pooling, dropout, ensemble (create 10 patches by cropping and average the predictions), data-augmentation (intensity of RGB channels)



Remove top fully-connected layer 7

Drop ~16 million parameters

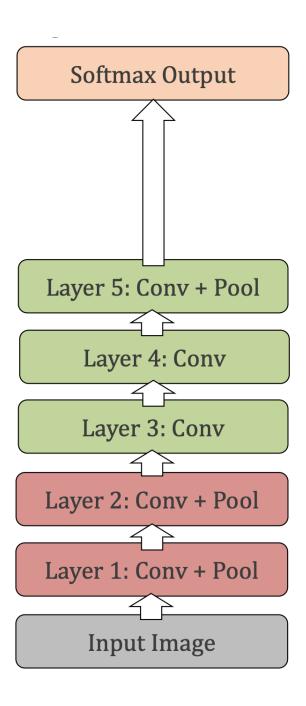
1.1% drop in performance



Remove both fully connected layers 6 and 7

Drop ~50 million parameters

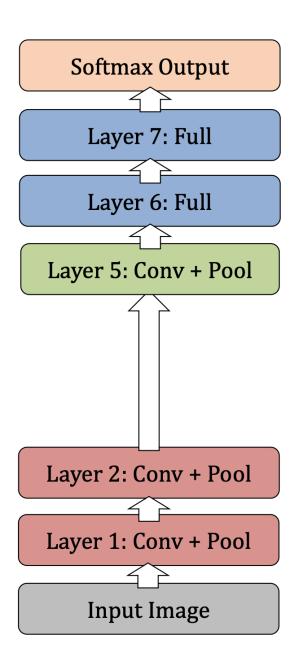
5.7% drop in performance



Remove upper convolutio / feature extractor layers (layer 3 and 4)

Drop ~1 million parameters

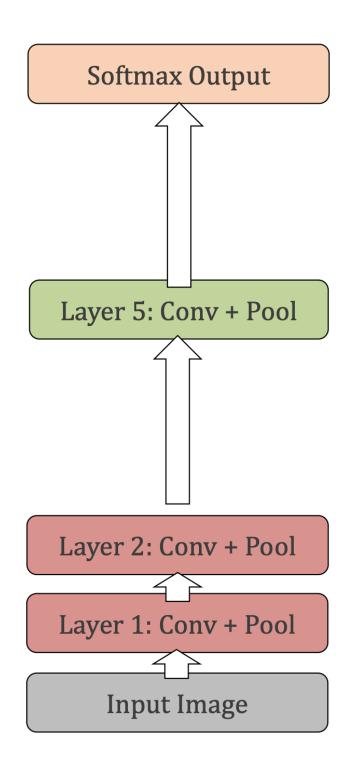
3% drop in performance



Remove top fully connected layer 6,7 and upper convolution layers 3,4.

33.5% drop in performance.

Depth of the network is the key.



GoogLeNet

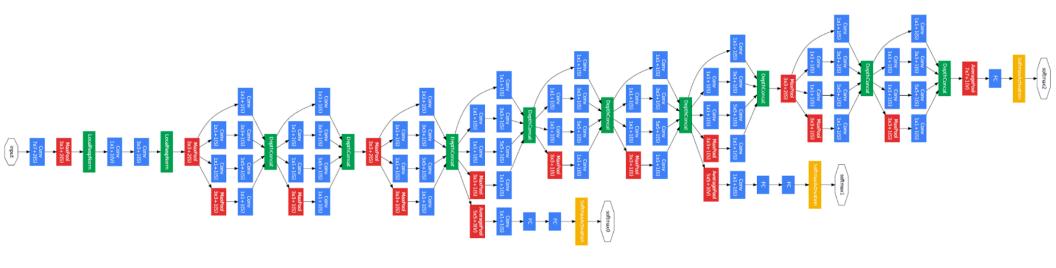
Motivation: multiscale nature of images

Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. '14]

GoogLeNet

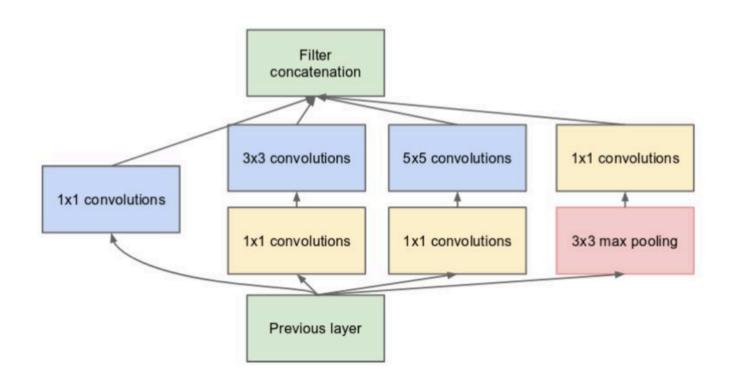


Large kernel for global features, and smaller kernel for local features.

Idea: have multiple different-size kernels at any layer.

[Going Deep with Convolutions, Szegedy et al. '14]

Inception Module



Multiple filter scales at each layer

Dimensionality reduction to keep computational requirements down

[Going Deep with Convolutions, Szegedy et al. '14]

Residual Networks

Motivation: extremely deep nets are hard to train (gradient explosion/vanishing)

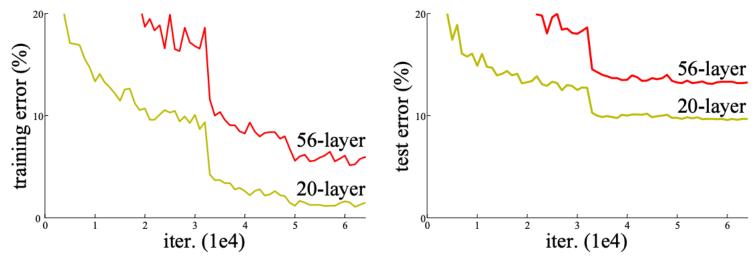
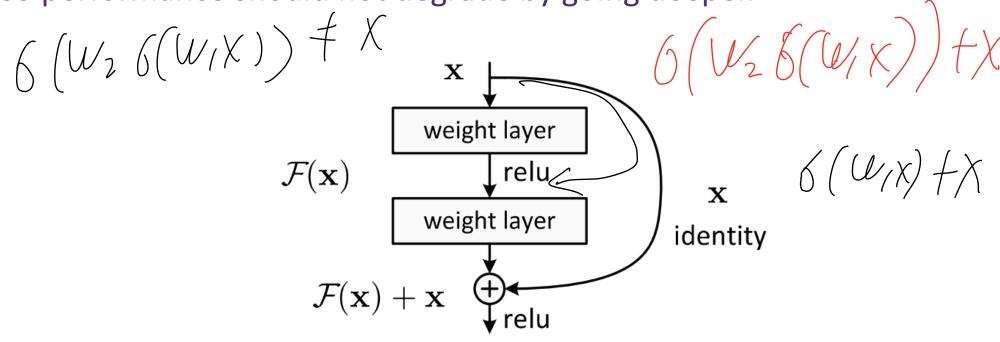


Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Residual Networks

Idea: identity shortcut, skip one or more layers.

Justification: network can easily simulate shallow network ($F \approx 0$), so performance should not degrade by going deeper.



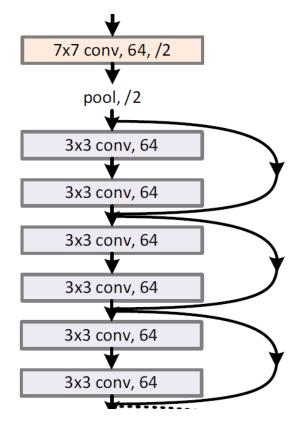
Residual Networks

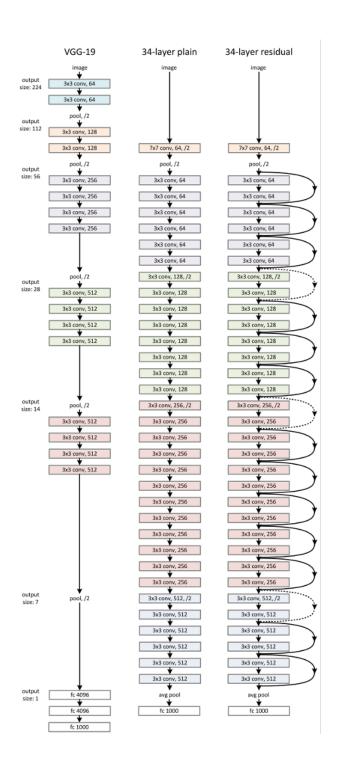
• 3.57% top-5 error on ImageNet

First deep network with > 100 layers.

Widely used in many domains

(AlphaGo)





Densely Connected Network

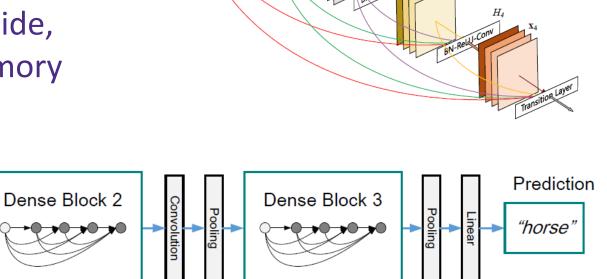
Idea: explicit forward output of layer to all future layers (by

concatenation)

Intuition: helps vanishing gradients, encourage reuse features (reduce parameter count)

Issues: network maybe too wide, need to be careful about memory consumption

Dense Block 1



[He, Zhang, Ren, Sun, '16]

Input

Neural Architecture / Hyper-Parameter Search

Many design choices:

- Number of layers, width, kernel size, pooling, connections, etc.
- Normalization, learning rate, batch size, etc.

Strategies:

- Grid search
- Random search [Bergestra & Bengio '12]
- Bandit-based [Li et al. '16]
- Gradient-based (DARTS) [Liu et al. '19]
- Neural tangent kernel [Xu et al. '21]
- •