Generalization Theory
for Deep Learning
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Basic version: finite hypothesis class

Finite hypothesis class: with probability 1 — 6 over the choice
of a training set of size n, for a bounded loss £, we have
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VC-Dimension

Motivation: Do we need to consider every classifier in & ?

Intuitively, pattern of classifications on the training set should
suffice. (Two predictors that predict identically on the training set
should generalize similarly).

Let F = {f: RY - {+1, — 1}} be a class of binary classifiers.

The growth function Ilg : N — [Fis defined as:
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The VC dimension of & is defined as:
VCdim(F) = max{m : I1g(m) = 2"} .



VC-dimension Generalization bound

Theorem (Vapnik-Chervonenkis): with probability 1 — 6 over
the choice of a training set, for a bounded loss £, we have
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Examples:

e Linear functions: VC-dim = O(dimension)

*/Neural network: VC-dimension of fully-connected net with width
[W and H layers is ® (WH) (Bartlett et al., ’17).



Problems with VC-dimension bound |, - # [~

57
1. In over-parameterized regime, bound >> 1.
2. Cannot explain the random noise phenomenon:

 Neural networks that fit random labels and that fit true labels
have the same VC-dimension.

Practice: gradient descent
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Understanding DL Requires Rethinking Generalization



PAC Bayesian Generalization Bounds

Setup: Let P be a prior over function in class &, let QO be the
posterior (after algorithm’s training).

Theorem: with probability 1 — 6 over the choice of a training set,
for a bounded loss £, we have

sup
fEF

1 n
— ) 2(fx). )
n i=1

KLQQ [ P)+1log1/s
— E(eyyen [£(f), )] =0<\/ (Q || P)+log

| j )mumm/ﬁ%
Py M O\ka

& i C\mu S\g'ow



Rademacher Complexity

Intuition: how well can a classifier class fit random noise?

(Empirical) Rademacher complexity: For a training set

S = {x{,%,,...,x,}, and a class &, denote:
n
R(S) = E,sup ) 06,f(x).
fEPZ i=1

where o; ~ Unif{+1, — 1} (Rademacher R.V. ).

(Population) Rademacher complexity:
R = E, [Rn(s)].



Rademacher Complexity Generalization Bound

Theorem: with probability 1 — 6 over the choice of a training set,
for a bounded loss £, we have
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Use Rademacher complexity theory, we can obtain a

Kernel generalization bound

generalization bound O(\/yT(H*)_ly/n) where y € R" are n
labels, and H* € R™" is the kernel (e.g., NTK) matrix.
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Norm-based Rademacher complexity bound

Theorem: If the activation function is o is p-Lipschitz. Let
F = {x > Wy, ,6(Wo(---6(Wx)---), ||WT||1 w <BVYhe[H]}

then R.(S) < IX"l, (2pB)"™ /2 Ind where
= [x1, ..., X,] € RXM is the input data matrix.



Comments on generalization bounds

* When plugged in real values, the bounds are rarely non-trivial
(i.e., smaller than 1)

» “Fantastic Generalization Measures and Where to Find them”
by Jiang et al. '19 : large-scale investigation of the correlation of
extant generalization measures with true generalization.
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Comments on generalization bounds

« Uniform convergence may be unable to explain generalization
of deep learning [Nagarajan and Kolter, "19]

» Uniform convergence: a bound for all f € F

» Exists example that 1) can generalize, 2) uniform
ce fails. 7
convergen | WUJ Ay

* Rates:
« Most bounds:l/\/ﬁ
- Local Rademacher complexity: 1/n.



Separation between NN and kernel

» For approximation and optimization, neural network has no
advantage over kernel. Why NN gives better performance:
generalization.

« [Allen-Zhu and Li '20] Construct a class of functions & such that

y = f(x) for some f € F: {A@@l £x) ( Jw fﬁ“ﬂ[ﬂ/

* no kernel is sample-efficient;
« Exists a neural network that is sample-efficient.
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Separation between NN and kernel
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Separation between NN and kernel
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Separation between NN and kernel |



Separation between NN and kernel
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Separation between NN and kernel
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Separation between NN and kernel
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Separation between NN and kernel
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