3
<F S
H O
Ww 5
) £
O »

CSE543: Deep Learning

Instructor: Simon Du

Teaching Assistant: Runjia Li, Ruizhe Shi

Course Website (contains all logistic information): https://courses.cs.washington.edu/
courses/cseb43/25au/

Questions: Ed Discussion

Announcements: Canvas

Homework: Canvas

CSE543: Deep Learning

What this class is:

 Fundamentals of DL: Neural network architecture, approximation

properties, optimization, generalization, generative models,
representation learning

* Preparation for further learning / research: the field is fast-

moving, you will be able to apply the fundamentals and teach
yourself the latest

What this class is not:

* An easy course: mathematically easy
« A survey course: laundry list of algorithms

« An application course: implementation of different architectures on
different datasets

Prerequisites

= Working knowledge of:

= Linear algebra

= Vector calculus

= Probability and statistics

= Algorithms

= Machine leanring (CSE 446/546)
Mathematical maturity
= “Can | learn these topics concurrently?”

Lecture

= Time: Tuesday and Thursday 11:30 AM - 12:50PM
= ECE 045 or Zoom (see website for the schedule)
= Slides + handwritten notes (e.g., proofs)

= Zoom link on Canvas

= Tentative schedule on course website

Homework (40%)

= 2 homework (20%+20%)

0 Each contains both theoretical questions and
programming questions

0 Related to course materials

0 Collaboration okay but must write who you collaborated
with. You must write, submit, and understand your
answers and code.

0 Submit on Canvas
0 Must be typed
0 Two late days
O Tentative timeline:
0 HW 1 due: 10/23
0 HW 2 due: 11/6

Course Project (60%)

= Group of 2-4.

= Topic: literature review (state-of-the-art) or original
research.

= Post on Ed Discussion to form teams.

= Some potential topics are in listed on Canvas. OK to do a
project not listed.

= You can work on a project related to your research.
= Proposal (due: 10/9): 5%
= Format: NeurlPS Latex format, ~1 - 1.5 pages
= Presentations on (12/2 and 12/4 on Zoom): 20%
= Final report (due: 12/12): 35%
= Format: NeurlPS Latex format, ~8 pages
= Submit on Canvas

Possible Topics

= Approximation properties

= Advanced optimization methods

= Optimization theory for deep learning
= Generalization theory for deep learning
= Deep reinforcement learning

= |[mplicit regularization

= Meta-learning

= Robustness

= Neural network compression

= Pre-training, fine-tuning, RLHF, RLVR
= Deep learning application

Communication Chanels

= Announcements
= Canvas
= questions about class, homework help
Ed Discussion
Office hours:
Simon Du: Tu 10:00 - 11:00 AM, CSEZ2 312
Runjia Li: W 10:00 - 11:00 AM, CSE2 152
Ruizhe Shi: Tu 16:00 - 17:00, CSE2 151
Regrade requests
Canvas
Personal concerns:
0 Email to instructor or TAs

Topic 1: Review (Today)

= ML Review: training, generalization

= Neural network basics: fully-connected neural network,
gradient descent

Topic 2: Approximation Theory

= Why neural networks can express the (regression,
classification, ...) function you want?

= Construction of such desired neural networks
= Universal approximation theorem

Topic 3: Optimization

= Review: Back-propagation
= Auto-differentiation

= Advanced optimizers: momentum (Nesterov acceleration),
adaptive method (AdaGrad, Adam)

= Techniques for improving optimization: batch-norm, layer-
norm, ..

= Theory: global convergence of gradient of over-
parameterized neural networks

= Neural Tangent Kernel

Topic 4: Generalization

= Measures of generalization

= Double descent

= Techniques for improving generalization

= Generalization theory beyond VC-dimension
= [mplicit regularization

= Why NN outperforms kernel

Topic 5: Architecture

Convolutional neural network
Recurrent neural network
« LSTM
Attention-based neural network
= Transformer
General framework

Topic 6: Representation Learning / Pre-Training

= Multi-task representation learning
= Auto-regressive pre-training

= Multi-modal learning

= Contrastive learning

= Meta-learning

= Data

= Theory

Topic 7: Generative Models

= Generative adversarial network
= Variational Auto-Encoder

= Energy-based models

= Normalizing flows

= Diffusion models

e Spotify:

Discover Weekly am azon
—
98% Match

ML uses past data to make predictions

facebook.

ads

Supervised Learning Process

Collect a dataset
Decide on a model

Find the function which fits the data best
Choose a loss function
Pick the function which minimizes loss
on data

Use function to make prediction on new
examples

18

Framework

19

Neural Networks

Single Node

“bias unit”

-

/ \
‘\ L0 ,\\CIZ’O =1 X =
~N_7 \\
~ 0o
6, s

N\

@ 92 ,Z/—>h9(x)

Sigmoid (logistic) activation function: g(z) —

Based on slide by Andrew Ng

L0 0o
1 . (91
L9 0= (92
I3 il i (93 _
g(0Tx) loge
1 Regression
14 e 0'x
1

Slide by Andrew Ng

Neural Network

Layer 1

(Input Layer)

Layer 2 Layer 3
(Hidden Layer) (Output Layer)

11

OV = weight matrix stores parameters
from layerj to layerj + 1

e al) = “activation” of unit/ in layer
JaY ‘2>a53)_>h9(x) - : :

a\? = g(8\)xo + O\Va1 + 0 zs + 01 3)
a§2) = g((-')%)a:o + @()£C + @()x + @(1) 3)
a:(f) = g(@(l)x + @()x —|—@()2 —I—('-)%):B)
ho(@) = a® = g(02a® + 6P + 64?1+ 0@2)

If network has s; units in Iayerj and S;,; units in layer j+1,
then ©U) has dlmen5|on Siv1 X (S+1)

@(1) c R3X4 @(2) c R1X4

Slide by Andrew Ng

Multi-layer Neural Network - Binary Classification

o) = (@1 M)

L(y, y) = ylog(y) + (1 — y)log(1l —)

1 Binary
g(2) = | + o2 Logistic
€ Regression

y=g(0Mah)

Multi-layer Neural Network - Binary Classification

al) = x

0@ = (0 g1

y=9(

O(L) (L)

L(y, y) = ylog(y) + (1 — y)log(1l —)

1 Binary

o(z) = max{0,2} g(z) = | + 2 Logistic

Regression

Multiple Output Units: One-vs-Rest

OO

0
when pedestrian

Slide by Andrew Ng

>
2905

o O = O

when car

> 40“
ARK RN P

‘ N '
L
‘é.vo‘r« 9
NOZENF

s
2
o O

K
< he (X) c R
Multi-class
Logistic
Regression
E E
0 0
h@(X) ~ 1 h@(X) =~ O
- O - - 1 -
when motorcycle when truck

Multi-layer Neural Network - Regression

al) = x

0@ = (0 g1

L(ya @\) — (y - @\)2

o(z) = max{0, z} Regression

7= L)L)

a) = x
,@ — @y

a® = g (z®)

Z(l+1) — D40
al+) = g (Z(z+1))

7= g(O®aD)

L(y,y) =ylog(y)+ (1 — y)log(l — y)
1
1l +e%

g(z) =

Gradient Descent: O «+ @Y — nVgou L(y, §) Vi

Gradient Descent: @(l) <— @(l) — nV@(Z)L(y, Z/U\) W/

Seems simple enough, why are packages like PyTorch, Tensorflow,
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation

2. Convenient libraries

3. GPU support

Gradient Descent:

Seems simple enough|
Theano, Cafe, MxNet

1. Automatic differ

2. Convenient librg

class Net(nn.Module):

def

def

__init__(self):

super(Net, self).__init__()

1 input image channel, 6 output channels, 3x3 square convolution
kernel

self.convl = nn.Conv2d(1, 6, 3)

self.conv2 = nn.Conv2d(6, 16, 3)

an affine operation: y = Wx + b

self.fcl = nn.Linear(16 * 6 * 6, 120) # 6#6 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

forward(self, x):

Max pooling over a (2, 2) window

x = F.max_pool2d(F.relu(self.convli(x)), (2, 2))

If the size is a square you can only specify a single number
F.max_pool2d(F.relu(self.conv2(x)), 2)

x.view(-1, self.num_flat_features(x))

F.relu(self.fcl(x))

F.relu(self.fc2(x))

self.fc3(x)

return x

X X X X X
n

create your optimizer

optimizer = optim.SGD(net.parameters(), 1lr=0.01)

in your training loop:

optimizer.zero_grad() # zero the gradient buffers

output = net(input)

loss = criterion(output, target)
loss.backward()

optimizer.step() # Does the update

