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1 Separation between NN and kernel

Definition (Kernel method). A linear method with an embedding ϕ : Rd 7→ H (Hilbert space),
which turns an element f ∈ H into a prediction function y = ⟨f, ϕ(x)⟩. The method uses n samples
{xi}ni where xi ∈ Rd, observes {yi}ni , and requires f ∈ span(ϕ(xi)

n
i=1), i ∈ [n].

Theorem (Allen-Zhu and Li’20). There exists a class of functions C ⊆ {c : Rd 7→ R} and a
distribution µ over Rd such that:

1) For all kernel method satisfying the definition above, there exists a c ∈ C such that given yi =
c(xi), if Ex∼µ[(c(x)− ⟨f, ϕ(x)⟩)2] ≤ 1

9 , then n ≥ 2d−1.

2) There exists a simple procedure such that it can output the true c as long as n ≥ d. This procedure
can be simulated/approximated by a neural network with gradient descent.

Theorem idea: the separation between NN and kernel is that there exists a function class such that
kernel method requires exponential number of samples whereas neural network requires only linear
number of samples.

Proof. Define distribution µ uniform on {0, 1}d. We consider

C = {cS(x) =
∏
s∈S

xs}, s ⊂ {1, · · · , d}

We first prove part 2) of the theorem. Choose a basis (e1, · · · , ed) for C. We observe yi = c(ei).
Note that if i ∈ S, then yi = −1 and if i /∈ S, then yi = 1. We know that whether i is in S or not,
so we can identify the set S. Thus we can learn the function cS by querying only d samples.

To prove part 1) of the theorem, note that C is a basis for a general function class {f : {−1, 1}d 7→ R}

with distribution µ where Ex∼µ[cS(x) · cS′(x)] =

{
0 if S ̸= S′

1 if S = S′

Our goal is to compute a small test error

E
x∼µ

[(cS∗(x)− ⟨f, ϕ(x)⟩)2]

By definition, f ∈ span (ϕ(xi)
n
i=1), so we can write f =

∑n
i=1 aiϕ(xi).

Consider x 7→ ⟨ϕ(xi), ϕ(x)⟩. We can also write x =
∑

S∈[d] λi,ScS(x)
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Thus, we can write the test error in quadratic form:

E
x∼µ

[(cS∗(x)− ⟨f, ϕ(x)⟩)2] = E
x∼µ

[(cS∗(x)−
∑
S∈[d]

n∑
i=1

aiλi,ScS(x))
2]

= (1−
n∑
i

aiλi,S∗)2 +
∑
S ̸=S∗

(
∑
i

aiλi,S)
2

By assumption, if this error is less or equal to 1
9 , then

(1−
n∑
i

aiλi,S∗)2 ≤ 1

9
and

∑
S ̸=S∗

(
∑
i

aiλi,S)
2 ≤ 1

9

We will show that these two properties imply that n ≥ 2d−1 by some linear algebra.

We use the following notations (assuming n ≤ 2d).

Λ : 2d × n matrix

ΛS,i = λi,S

A : n× 2d matrix

Ai,S∗ = ai,S∗

Ω = ΛA : 2d × 2d matrix of rank n

We rewrite the two properties in terms of the new notations.

Property 1 is equivalent to

(1− ΩS∗,S∗)2 ≤ 1

9

This implies that ΩS∗,S∗ ≥ 2
3 , and thus

∑
S ̸=S∗ Ω2

S∗,S∗ ≤ 1
9 .

In other words, the diagonal entries of Ω are at least 2
3 , and the sum of the off-diagonal entries

(row-wise) squared is no more than 1
9 . The idea is to use the property that a diagonal dominant

matrix has near full rank.

Formally, we consider Ω = diag(Ω) + Ω′, where Ω′ is the off-diagonal matrix.

We know that the Frobenius norm ||Ω′||2F ≤ 2d

9 by definition, and it is equivalent to the sum of the

eigenvalues of Ω′. This implies that Ω′ has at most 2d

4 eigenvalues that are at least 2
3 .

We consider the subspace with eigenvalue strictly smaller than 2
3 , which has dimension at least

3
4 · 2d. For any x in this subspace, note that

||Ωx||2 = ||diag(Ω)x+Ω′x||2 ≥ ||diag(Ω)x||2 − ||Ω′x||2 >
2

3
x− 2

3
x = 0
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This shows that rank(Ω) ≥ 3
4 ·2

d, since we have a subspace of dimension at least 3
4 ·2

d such that for
every entry x in this subspace, the product with our matrix is strictly positive. Then this matrix
has rank at least of the subspace dimension.

Thus, we have n ≥ 3
4 · 2d.

3


