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1 Separation between NN and kernel

Definition (Kernel method). A linear method with an embedding ¢ : R% s H (Hilbert space),
which turns an element f € H into a prediction function y = (f,p(x)). The method uses n samples
{x;}? where x; € RY, observes {y;}1*, and requires f € span(p(z;)P_,),i € [n].

Theorem (Allen-Zhu and Li’20). There ewists a class of functions C C {c : R? — R} and a

distribution p over R% such that:

1) For all kernel method satisfying the definition above, there exists a ¢ € C such that given y; =
c(xi), if Bompl(c(z) = (f,6(2)))?] < §, then n > 2771,

2) There exists a simple procedure such that it can output the true ¢ as long asn > d. This procedure
can be simulated/approximated by a neural network with gradient descent.

Theorem idea: the separation between NN and kernel is that there exists a function class such that
kernel method requires exponential number of samples whereas neural network requires only linear
number of samples.

Proof. Define distribution x uniform on {0,1}¢. We consider
C={cs(x)=[Jashs c{L,---,d}
ses

We first prove part 2) of the theorem. Choose a basis (e1,--- ,eq) for C. We observe y; = c(e;).
Note that if i € S, then y; = —1 and if i ¢ S, then y; = 1. We know that whether 7 is in S or not,
so we can identify the set S. Thus we can learn the function cg by querying only d samples.

To prove part 1) of the theorem, note that C is a basis for a general function class {f : {—1,1}¢ — R}
0 ifS#Y5

ith distributi here Eg nes\ )=
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Our goal is to compute a small test error

E [(cs+(z) = (f,6(x)))’]

U

By definition, f € span (¢(x;)P ), so we can write f =Y " | a;d(x;).

Consider z — (¢(z;), ¢(z)). We can also write =} gc 14 Ai,scs(@)



Thus, we can write the test error in quadratic form:

n

E [(cs+(x) = (f,¢(@)))?] = E [(es-(z) = Y Y aidiscs(@))?]
1
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By assumption, if this error is less or equal to %, then
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We will show that these two properties imply that n > 29~1 by some linear algebra.

We use the following notations (assuming n < 29).

A : 2% x n matrix

Asi = Nis

A :n x 2% matrix
Aj 5+ = a; g+

Q= AA: 2% x 29 matrix of rank n

We rewrite the two properties in terms of the new notations.

Property 1 is equivalent to
(1— Qg+ 5+)% <

Nel i

This implies that Qg+ g« > %, and thus ZS;&S* Q%*S* < %.

In other words, the diagonal entries of € are at least %, and the sum of the off-diagonal entries

(row-wise) squared is no more than %. The idea is to use the property that a diagonal dominant
matrix has near full rank.

Formally, we consider 2 = diag(Q) + €/, where ' is the off-diagonal matrix.

We know that the Frobenius norm ||€'||% < % by definition, and it is equivalent to the sum of the

eigenvalues of €2'. This implies that €’ has at most % eigenvalues that are at least %

We consider the subspace with eigenvalue strictly smaller than %, which has dimension at least
% .2, For any x in this subspace, note that

. . 2 2
Q]2 = ||diag(Q)a + Ylls > [|diag(Q)z[l2 — [|¥'z||2 > Jo - Z2 =0



This shows that rank(€2) > % -2% since we have a subspace of dimension at least % -2% such that for
every entry x in this subspace, the product with our matrix is strictly positive. Then this matrix
has rank at least of the subspace dimension.

Thus, we have n > % -2, ]



