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What determines the convergence rate?
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Neural Tangent Kernel

Recipe for desighing new kernels

N Ofnn (OnN, ) OfnN (OnN, T')
INN (0NN, Z) D k(@,5') = Bow [< Box | 90nm >]

Transform a neural network of any architecture to a kernel!

Fully-connected NN — Fully-connected NTK
Convolutional NN — Convolutional NTK
Graph NN — Graph NTK



50

40

30

20

10

Fully-Connect NTK

—0.1
0.2 )
09

Features

Avg Rank

38 3 35
28 I I I
FCNTK FCNN Random RBF
Forest Kernel

—0.1 —0.3
0.2 0.5

AN
0.9 —0.8
FC NTK

Gasiter | Aughce | P | oA

FC NTK 82% 72% 96%
FC NN 81% 60% 95%
Random o, 68% 95%
Forest
RBF Kernel 81% 72% 94%



Pairwise Comparisons
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Graph Neural Network
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Graph Neural Tangent Kernel
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What are left open?

CIFAR-10 Image Classification
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Open Problems:

Why there is a gap:
finite-width?
learning rate?

Understanding techniques:
batch-norm

dropout
data-augmentation



Deep Learning
Generalization




Measure of Generalization

Generalization: difference in performance on train vs. test.

1 n
— 2 £, ) = Bioyyoal (), )
i=1

Assumption (x;,y,) i.i.d. ~ D



Problems with the theoretical idealization

Data is not identically distributed:
* Images (Imagenet) are scraped in slightly different ways

« Data has systematic bias (e.g., patients are tested based on
symptoms they exhibit)

 Data is result of interaction (reinforcement learning)

« Domain / distribution shift



Meta Theorem of Generalization

Meta theorem of generalization: with probability 1 — 6 over the
choice of a training set of size n, we have

o, Complexity(7) + Tog(1/8
sup |~ ' £0£06).3) = Eqeyy-p [£(/(0.) :0<\/ B )>
i=1

feF n

Some measures of complexity:

* (Log) number of elements

VC (Vapnik-Chervonenkis) dimension
Rademacher complexity

PAC-Bayes



Classical view of generalization

Decoupled view of generalization and optimization

. Optimization: find a global minimum: min — 2 Z(f(x),y,)
fEF N

e Generalization: how well does the global optlmlzer generalize

Practical implications: to have a good generalization, make
sure & is not too “complex”.

Strategies:

* Direct capacity control: bound the size of the network /
amount of connections, clip the weights, etc.

 Regularization: add a penalty term for “complex” predictors:
weight decay (£, norm), dropout, etc.



Techniques for
Improving Generalization
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Weight Decay

L2 regularization: 5||9||%

Implementation: 6 < (1 — n1)0 — n Vf(0)



Dropout

Intuition: randomly cut off some connections and neurons.

Training: for each input, at each iteration, randomly “turn off”
each neuron with a probability 1 —

 Change a neuron to 0 by sampling a Bernoulli variable.

e Gradient only propogatd from non-zero neurons.
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Dropout

Dropout changes the scale of the output neuron:

v = Dropout(c(WX))
» Ely] = aklo(Wx)]

Test time:y = ao(Wx) to match the scale
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Understanding Dropout

* Dropout forces the neural network to learn redundant patterns.

* Dropout can be viewed as an implicit L2 regularizer (Wager,
Wang, Liang '13).
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Early Stopping

» Continue training may lead to overfitting.
» Track performance on a held-out validation set.
« Theory: for linear models, equivalent to L2 regularization.
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Data Augmentation

Depend on data types.

Computer vision: rotation, stretching, flipping, etc
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Mixup data augmentation

e %=+ (1= A,

e 4 ~ Beta(0.2)




Data Augmentation

Depend on data types.

Natural language processing:
« Synonym replacement

 This article will focus on summarizing data augmentation in
NLP.

» This write-up will focus on summarizing data augmentation in
NLP.

« Back translation: translate the text data to some language and
then translate back

- | have no time. -> ;% 8H18]. -> | do not have time.



Learning rate scheduling

Start with large learning rate. After some epochs, use small
learning rate.

Learning rate schedule
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Learning rate scheduling

Start with large learning rate. After some epochs, use small
learning rate.

Theory:

* Linear model / Kernel: large learning rate first learns
eigenvectors with large eigenvalues (Nakkiran, "20).

* Representation learning (Li et al., ‘19)
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Normalizations

Batch normalization (loffe & Szegedy, '15)

Layer normalization (Ba, Kiros, Hinton, "16)

Weight normalization (Salimans, Kingma, '16)

Instant normalization (Ulyanov, Vedaldi, Lempitsky, *16)

« Group normalization (Wu & He, '18)



Generalization Theory
for Deep Learning
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Basic version: finite hypothesis class

Finite hypothesis class: with probability 1 — ¢ over the choice
of a training set of size n, for a bounded loss £, we have

sup
feF

1 &
; Z f(f(xl-), yi) — [E(x,y)ND [f(f(x)’ )7)]
i=1

F|+1logl/od
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n
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VC-Dimension

Motivation: Do we need to consider every classifier in & ?

Intuitively, pattern of classifications on the training set should
suffice. (Two predictors that predict identically on the training set
should generalize similarly).

Let F = {f: RY - {+1, — 1]} be a class of binary classifiers.

The growth function I1g : N — [Fis defined as:
Npom) = max | {(fx). f), ... f,)) | f€ FY |

(X[ X0s -+ X))

The VC dimension of & is defined as:
VCdim(F) = max{m : [Ig(m) = 2"} .



VC-dimension Generalization bound

Theorem (Vapnik-Chervonenkis): with probability 1 — o over
the choice of a training set, for a bounded loss £, we have

sup
feF

1 n
= 2 A3 = Eqeyyep [£(F@).)
=1

Examples:

 Linear functions: VC-dim = O(dimension)

* Neural network: VC-dimension of fully-connected net with width
W and H layers is ® (WH) (Bartlett et al., ’17).

0<\/

VCdim(F)log 11 + log 1/5)
n



Problems with VC-dimension bound

1. In over-parameterized regime, bound >> 1.
2. Cannot explain the random noise phenomenon:

 Neural networks that fit random labels and that fit true labels
have the same VC-dimension.

Practice: gradient descent
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Understanding DL Requires Rethinking Generalization



PAC Bayesian Generalization Bounds

Setup: Let P be a prior over function in class &, let Q be the
posterior (after algorithm’s training).

Theorem: with probability 1 — 6 over the choice of a training set,
for a bounded loss £, we have

o KL P)+logl/é6
sup | — 3 £(f05), %) = Euyyep [£(F0), )] :0<\/ B >
=1

feF n




Rademacher Complexity

Intuition: how well can a classifier class fit random noise?

(Empirical) Rademacher complexity: For a training set

S = {X{,%y, ..., X, }, and a class &, denote:
n
R(S) = E,sup ) 6,f(x).
fEQ‘r‘ i=1

where 6; ~ Unif{+1, — 1} (Rademacher R.V.).

(Population) Rademacher complexity:
R = E, [Rn(s)].



Rademacher Complexity Generalization Bound

Theorem: with probability 1 — 6 over the choice of a training set,
for a bounded loss £, we have

o R log1/6
SUb 2 C(f(x),¥) = By [f(f(x),y)] ¢ <_n i \/ E >
i=1

fEF n n

and

o R log 1/6
sup " Z C(f(x),y;) — E e yy~p [f(f(x),)’)] = ¢ <_n i \/ 8 >
i=1

feF n n




Kernel generalization bound

Use Rademacher complexity theory, we can obtain a

generalization bound 0(\/yT(H*)_1y/n) where y € R" are n
labels, and H* € R"" is the kernel (e.g., NTK) matrix.
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Norm-based Rademacher complexity bound

Theorem: If the activation function is o is p-Lipschitz. Let
F = {x > Wy o(W,o(---c(Wx)--)IW/ ||, ,» < BVh € [H]}

then R(S) < ||XT||2 (2pB)1*14/2 Ind where
=[x, ..., x,] € R®"is the input data matrix.



Comments on generalization bounds

* When plugged in real values, the bounds are rarely non-trivial
(i.e., smaller than 1)

“Fantastic Generalization Measures and Where to Find them”
by Jiang et al. '19 : large-scale investigation of the correlation of
extant generalization measures with true generalization.
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Comments on generalization bounds

« Uniform convergence may be unable to explain generalization
of deep learning [Nagarajan and Kolter, "19]

» Uniform convergence: a bound for all f € &#

« Exists example that 1) can generalize, 2) uniform
convergence fails.

* Rates:

« Most bounds:l/\/z.
« Local Rademacher complexity: 1/n.



