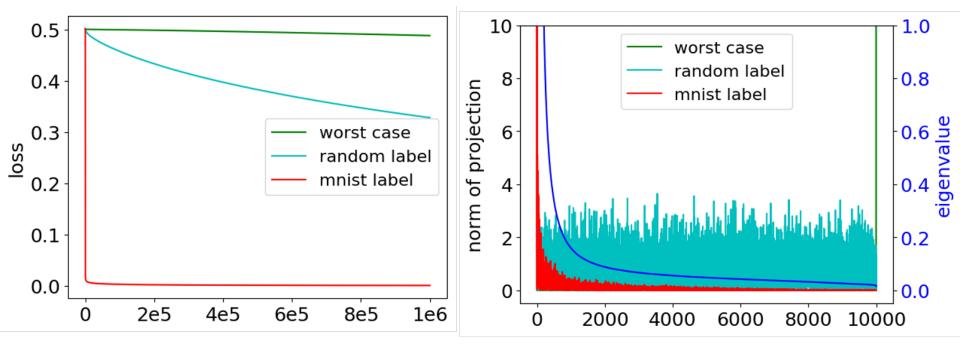
Neural Tangent Kernel

What determines the convergence rate?



Convergence Rate

Projections

Neural Tangent Kernel

Recipe for designing new kernels

$$f_{\mathrm{NN}}\left(heta_{\mathrm{NN}},x
ight) >\!\!\!> k\left(x,x'
ight) = \mathbb{E}_{ heta_{\mathrm{NN}} \sim \mathcal{W}}\left[\left\langle \frac{\partial f_{\mathrm{NN}}\left(heta_{\mathrm{NN}},x
ight)}{\partial heta_{\mathrm{NN}}}, \frac{\partial f_{\mathrm{NN}}\left(heta_{\mathrm{NN}},x'
ight)}{\partial heta_{\mathrm{NN}}}
ight
angle
ight]$$

Transform a neural network of any architecture to a kernel!

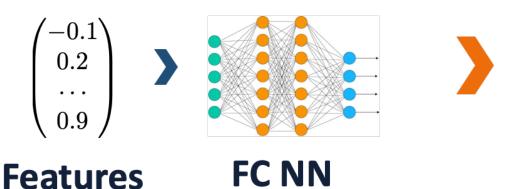
Fully-connected NN → Fully-connected NTK

Convolutional NN → Convolutional NTK

Graph NN → Graph NTK

•••••

Fully-Connect NTK



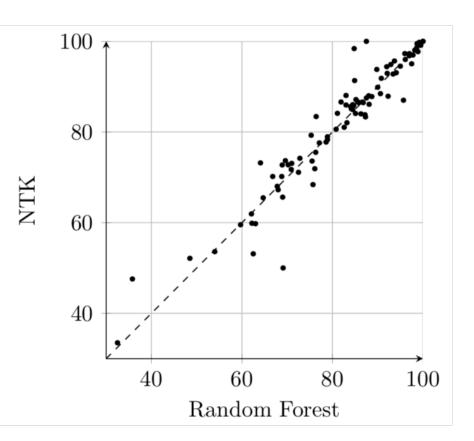
 $k\left(\left(egin{matrix} -0.1 \ 0.2 \ \dots \ 0.9 \end{matrix}
ight), \left(egin{matrix} -0.3 \ 0.5 \ \dots \ -0.8 \end{matrix}
ight)
ight)$

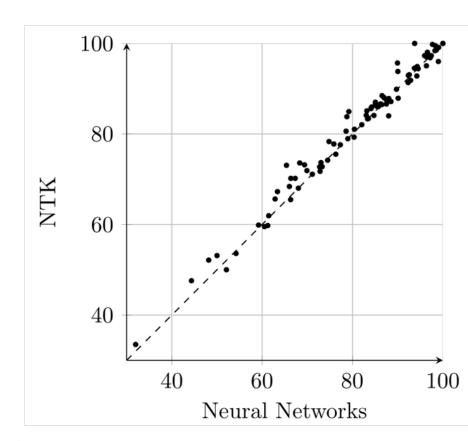
FC NTK

	Avg Rank						
50 –							
40 –		38		25			
40	28		33	35			
30 -			_	_			
20 -	_		_	_			
10 -							
	FC NTK	FC NN	Random Forest	RBF Kernel			

Classifier	Avg Acc	P95	PMA	
FC NTK	82%	72 %	96%	
FC NN	81%	60%	95%	
Random Forest	82%	68%	95%	
RBF Kernel	81%	72%	94%	

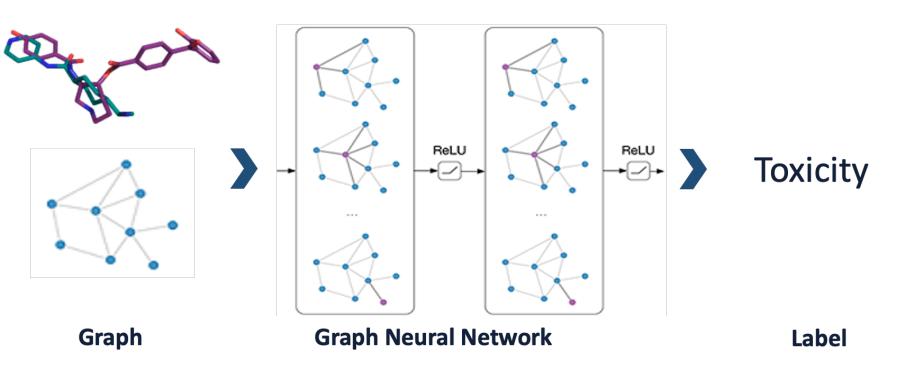
Pairwise Comparisons



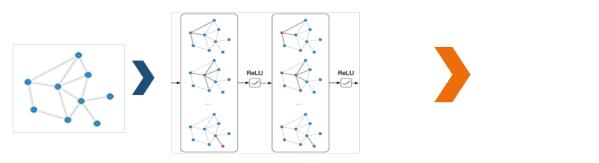


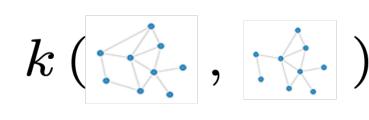
Classification Accuracy

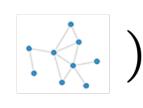
Graph Neural Network



Graph Neural Tangent Kernel





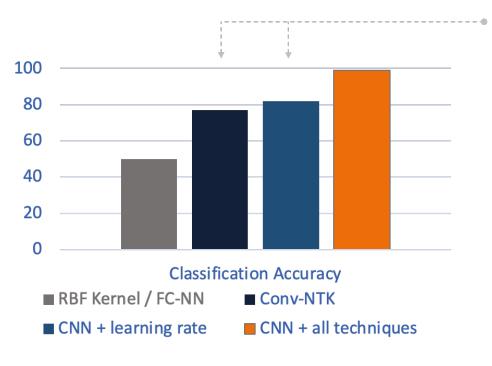


Graph **Graph NN**

Graph NTK

	Method	COLLAB	IMDB-B	IMDB-M	PTC
GNN	GCN	79%	74%	51%	64%
	GIN	80%	75%	52%	65%
GK	WL	79%	74%	51%	60%
	GNTK	84%	77%	53%	68%

What are left open?



Open Problems:

Why there is a gap:

finite-width? learning rate?

Understanding techniques:

batch-norm dropout data-augmentation

• • •

Deep Learning Generalization

Measure of Generalization

Generalization: difference in performance on train vs. test.

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(f(x_i), y_i) - \mathbb{E}_{(x,y) \sim \mathcal{D}}[\mathcal{E}(f(x), y)]$$

Assumption (x_i, y_i) $i \cdot i \cdot d \cdot \sim \mathcal{D}$

Problems with the theoretical idealization

Data is not identically distributed:

- Images (Imagenet) are scraped in slightly different ways
- Data has systematic bias (e.g., patients are tested based on symptoms they exhibit)
- Data is result of interaction (reinforcement learning)
- Domain / distribution shift

Meta Theorem of Generalization

Meta theorem of generalization: with probability $1 - \delta$ over the choice of a training set of size n, we have

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) - \mathbb{E}_{(x, y) \sim D} \left[\ell(f(x), y) \right] \right| = O\left(\sqrt{\frac{\mathsf{Complexity}(\mathcal{F}) + \log(1/\delta)}{n}}\right)$$

Some measures of complexity:

- (Log) number of elements
- VC (Vapnik-Chervonenkis) dimension
- Rademacher complexity
- PAC-Bayes
- •

Classical view of generalization

Decoupled view of generalization and optimization:

- Optimization: find a global minimum: $\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{m} \ell(f(x_i), y_i)$
- Generalization: how well does the global optimizer generalize

Practical implications: to have a good generalization, make sure \mathcal{F} is not too "complex".

Strategies:

- **Direct capacity control:** bound the size of the network / amount of connections, clip the weights, etc.
- **Regularization**: add a penalty term for "complex" predictors: weight decay (ℓ_2 norm), dropout, etc.

Techniques for Improving Generalization

Weight Decay

L2 regularization:
$$\frac{\lambda}{2} \|\theta\|_2^2$$

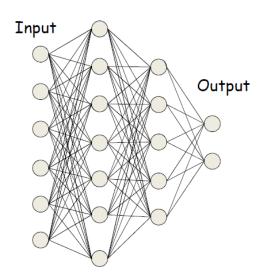
Implementation: $\theta \leftarrow (1 - \eta \lambda)\theta - \eta \nabla f(\theta)$

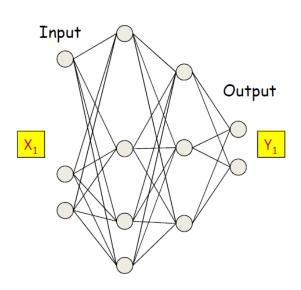
Dropout

Intuition: randomly cut off some connections and neurons.

Training: for each input, at each iteration, randomly "turn off" each neuron with a probability $1-\alpha$

- Change a neuron to 0 by sampling a Bernoulli variable.
- Gradient only propogatd from non-zero neurons.



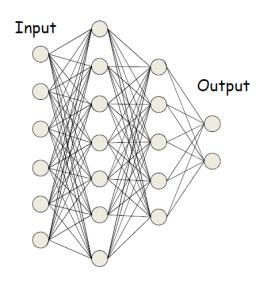


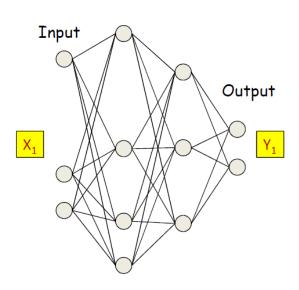
Dropout

Dropout changes the scale of the output neuron:

- $y = Dropout(\sigma(WX))$
- $\mathbb{E}[y] = \alpha \mathbb{E}[\sigma(Wx)]$

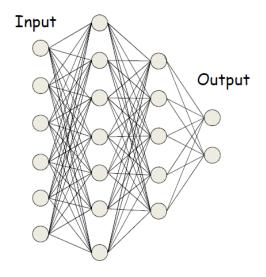
Test time: $y = \alpha \sigma(Wx)$ to match the scale

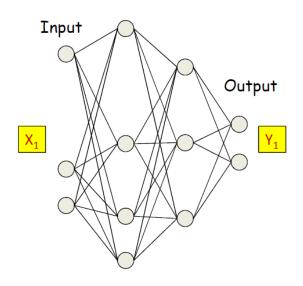




Understanding Dropout

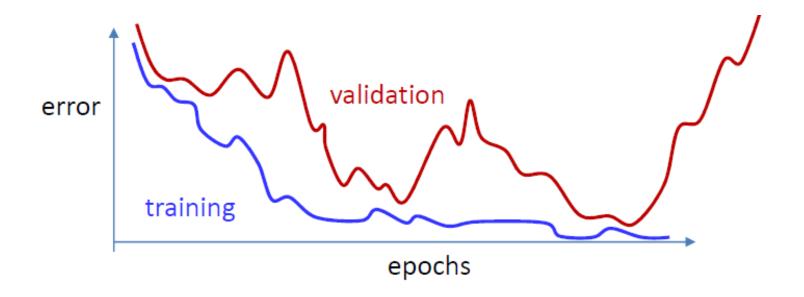
- Dropout forces the neural network to learn redundant patterns.
- Dropout can be viewed as an implicit L2 regularizer (Wager, Wang, Liang '13).





Early Stopping

- Continue training may lead to overfitting.
- Track performance on a held-out validation set.
- Theory: for linear models, equivalent to L2 regularization.



Data Augmentation

Depend on data types.

Computer vision: rotation, stretching, flipping, etc

9.00

CocaColaZero1_2.png

CocaColaZero1_6.png

CocaColaZero1_3.png

CocaColaZero1_7.png

CocaColaZero1_4.png

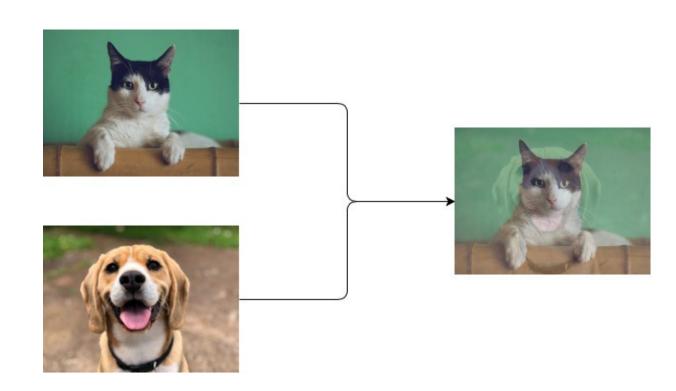
CocaColaZero1_8.png

Mixup data augmentation

•
$$\hat{x} = \lambda x_i + (1 - \lambda)x_j$$

•
$$\hat{y} = \lambda y_i + (1 - \lambda)y_i$$

• $\lambda \sim \text{Beta}(0.2)$



Data Augmentation

Depend on data types.

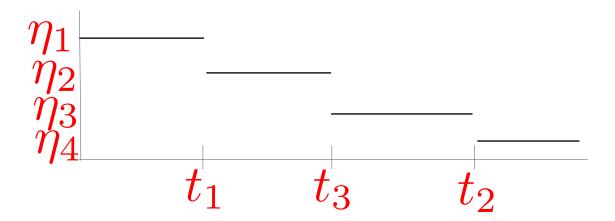
Natural language processing:

- Synonym replacement
 - This article will focus on summarizing data augmentation in NLP.
 - This write-up will focus on summarizing data augmentation in NLP.
- Back translation: translate the text data to some language and then translate back
 - I have no time. -> 我没有时间. -> I do not have time.

Learning rate scheduling

Start with large learning rate. After some epochs, use small learning rate.

Learning rate schedule

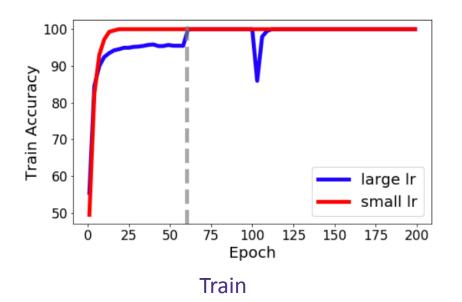


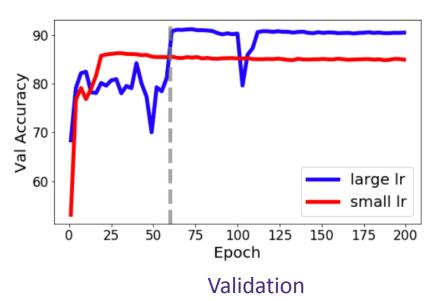
Learning rate scheduling

Start with large learning rate. After some epochs, use small learning rate.

Theory:

- Linear model / Kernel: large learning rate first learns eigenvectors with large eigenvalues (Nakkiran, '20).
- Representation learning (Li et al., '19)





Normalizations

- Batch normalization (loffe & Szegedy, '15)
- Layer normalization (Ba, Kiros, Hinton, '16)
- Weight normalization (Salimans, Kingma, '16)
- Instant normalization (Ulyanov, Vedaldi, Lempitsky, '16)
- Group normalization (Wu & He, '18)

• . . .

Generalization Theory for Deep Learning

Basic version: finite hypothesis class

Finite hypothesis class: with probability $1 - \delta$ over the choice of a training set of size n, for a bounded loss ℓ , we have

$$\sup_{f \in \mathscr{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) - \mathbb{E}_{(x, y) \sim D} \left[\ell(f(x), y) \right] \right| = O\left(\sqrt{\frac{\log |\mathscr{F}| + \log 1/\delta}{n}}\right)$$

VC-Dimension

Motivation: Do we need to consider **every** classifier in \mathcal{F} ? Intuitively, **pattern of classifications** on the training set should suffice. (Two predictors that predict identically on the training set should generalize similarly).

Let $\mathcal{F} = \{f : \mathbb{R}^d \to \{+1, -1\}\}$ be a class of binary classifiers.

The growth function $\Pi_{\mathscr{F}}: \mathbb{N} \to \mathbb{F}$ is defined as:

$$\Pi_{\mathcal{F}}(m) = \max_{(x_1, x_2, \dots, x_m)} \left| \left\{ (f(x_1), f(x_2), \dots, f(x_m)) \mid f \in \mathcal{F} \right\} \right|.$$

The VC dimension of \mathcal{F} is defined as:

$$VCdim(\mathcal{F}) = \max\{m : \Pi_{\mathcal{F}}(m) = 2^m\}.$$

VC-dimension Generalization bound

Theorem (Vapnik-Chervonenkis): with probability $1 - \delta$ over the choice of a training set, for a bounded loss ℓ , we have

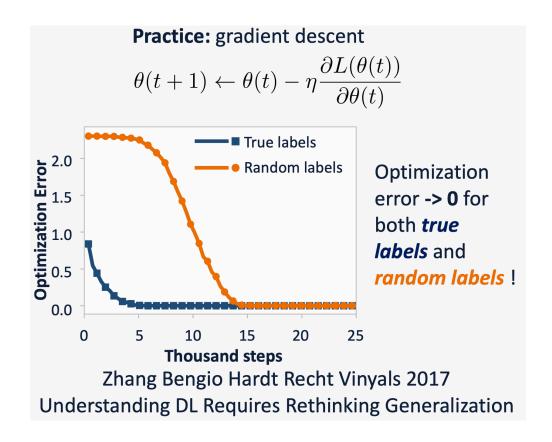
$$\sup_{f \in \mathscr{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \mathscr{C}(f(x_i), y_i) - \mathbb{E}_{(x, y) \sim D} \left[\mathscr{C}(f(x), y) \right] \right| = O\left(\sqrt{\frac{\mathsf{VCdim}(\mathscr{F}) \log n + \log 1/\delta}{n}}\right)$$

Examples:

- Linear functions: VC-dim = O(dimension)
- Neural network: VC-dimension of fully-connected net with width W and H layers is $\Theta(WH)$ (Bartlett et al., '17).

Problems with VC-dimension bound

- 1. In over-parameterized regime, bound >> 1.
- 2. Cannot explain the random noise phenomenon:
 - Neural networks that fit random labels and that fit true labels have the same VC-dimension.



PAC Bayesian Generalization Bounds

Setup: Let P be a prior over function in class \mathcal{F} , let Q be the posterior (after algorithm's training).

Theorem: with probability $1 - \delta$ over the choice of a training set, for a bounded loss ℓ , we have

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) - \mathbb{E}_{(x, y) \sim D} \left[\ell(f(x), y) \right] \right| = O\left(\sqrt{\frac{KL(Q \mid \mid P) + \log 1/\delta}{n}}\right)$$

Rademacher Complexity

Intuition: how well can a classifier class fit random noise?

(Empirical) Rademacher complexity: For a training set $S = \{x_1, x_2, ..., x_n\}$, and a class \mathcal{F} , denote:

$$\hat{R}_n(S) = \mathbb{E}_{\sigma} \sup_{f \in \mathcal{F}} \sum_{i=1}^n \sigma_i f(x_i) .$$

where $\sigma_i \sim \text{Unif}\{+1, -1\}$ (Rademacher R.V.).

(Population) Rademacher complexity:

$$R_n = \mathbb{E}_S \left[\hat{R}_n(s) \right].$$

Rademacher Complexity Generalization Bound

Theorem: with probability $1-\delta$ over the choice of a training set, for a bounded loss ℓ , we have

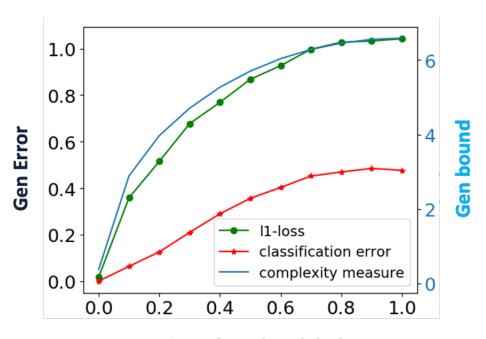
$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) - \mathbb{E}_{(x,y) \sim D} \left[\ell(f(x), y) \right] \right| = O\left(\frac{\hat{R}_n}{n} + \sqrt{\frac{\log 1/\delta}{n}}\right)$$

and

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) - \mathbb{E}_{(x,y) \sim D} \left[\ell(f(x), y) \right] \right| = O\left(\frac{R_n}{n} + \sqrt{\frac{\log 1/\delta}{n}}\right)$$

Kernel generalization bound

Use Rademacher complexity theory, we can obtain a generalization bound $O(\sqrt{y^{\top}(H^*)^{-1}y/n})$ where $y \in \mathbb{R}^n$ are n labels, and $H^* \in \mathbb{R}^{n \times n}$ is the kernel (e.g., NTK) matrix.



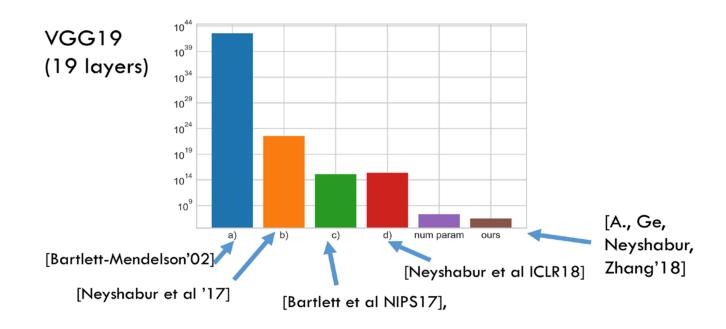
Portion of random labels

Norm-based Rademacher complexity bound

Theorem: If the activation function is σ is ρ -Lipschitz. Let $\mathscr{F} = \{x \mapsto W_{H+1}\sigma(W_h\sigma(\cdots\sigma(W_1x)\cdots),\|W_h^T\|_{1,\infty} \leq B \,\forall h \in [H]\}$ then $R_n(\mathscr{S}) \leq \|X^\top\|_{2,\infty} (2\rho B)^{H+1} \sqrt{2\ln d}$ where $X = [x_1,\ldots,x_n] \in \mathbb{R}^{d\times n}$ is the input data matrix.

Comments on generalization bounds

- When plugged in real values, the bounds are rarely non-trivial (i.e., smaller than 1)
- "Fantastic Generalization Measures and Where to Find them" by Jiang et al. '19: large-scale investigation of the correlation of extant generalization measures with true generalization.



Comments on generalization bounds

- Uniform convergence may be unable to explain generalization of deep learning [Nagarajan and Kolter, '19]
 - Uniform convergence: a bound for all $f \in \mathcal{F}$
 - Exists example that 1) can generalize, 2) uniform convergence fails.

Rates:

- Most bounds: $1/\sqrt{n}$.
- Local Rademacher complexity: 1/n.