Important Techniques in Neural Network Training

Gradient Explosion / Vanishing $6.$ ReLU

- Deeper networks are harder to train:
	- Intuition: gradients are products over layers
	- Hard to control the learning rate

^f ^X win WH WHY ⁶ WH ⁶ Mx Eun WHMAH WattAnd An ¹Why Wix An diag ^G Wh 6C ⁶ Wix ^y small magnitude if Wa Write small ex Wi Why large exp large Scale may not align multiplication small

Activation Functions

Rectified Linear United

Activation Function

 $W_n^{\delta\lambda} \sim$ Gaussian or $U^{\mu\nu}$

small gradient

eye large quad

- Zero-initialization
- Large initialization
- Small initialization $f(x)$
- Design principles: • Zero activation mean no prior knowledge
	- Activation variance remains same across layers

Kaiming Initialization (He et al. '15)
 $W_n^{(h)} \sim \mathcal{N}\left(0, \frac{2}{h}\right)$ W_q : $\sum_{n=1}^{\infty} d_{n+1}$ $\sum_{k=1}^{\infty} d_{n+1}$ $\sum_{k=1}^{\infty} d_{n+1}$ $\sum_{k=1}^{\infty} d_{n+1}$ $W_{ij}^{(h)} \sim \mathcal{N}\left(0, \frac{2}{d_h}\right).$ $\cdot h^{(h)} = 0$

- Designed for ReLU activation
- 30-layer neural network

Kaiming Initialization (He et al. '15) z^{n} = w^{n} . x^{n} pre-activation Each layer $\overline{Y}^{n+1} = 6 (2^{h})$ $Z_i^h = \frac{dF}{d\lambda}W_i^h X_i^h$
 $Z_i^h = \frac{dF}{d\lambda}W_i^h X_i^h$
 Z_i^h : menu zew, same var for all layers \int_{λ} $\begin{array}{ccc} \gamma+\end{array} & \overline{\textstyle \#}\left[\overline{W}\hat{\gamma}_{\bm{y}_1}^{\alpha}\right]=0 & \textstyle \sum\limits_{i}\textstyle \sum\limits_{j}\left[\frac{1}{2}\hat{\gamma}_{j}^{ij}\right]=0 \end{array}$ $\begin{array}{l}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end$ $= d\eta \cdot \text{Var}(W_{i,j}^{\eta}) \cdot \text{F}(\overline{(X_{j}^{\eta})^{2}})$

Kaiming Initialization (He et al. '15) $\mathbb{E}\left[\left(\mathbf{X}_{j}^{h}\right)^{T}\right]=\int_{-\infty}^{\infty}\left(\mathbf{X}_{j}^{h}\right)^{T}\left[\mathbf{P}\left(\mathbf{X}_{j}^{h}\right)\right]d\mathbf{X}_{j}^{h}$ $=\int_{-\infty}^{\infty} \text{max} \left(0, z_j^{n-1}\right)^2 \cdot \left[0, \left(z_j^{n-1}\right) \right] dz_j^{n-1}$ = $\int_{0}^{\infty} (z_{j}^{h-1})^{2} P(z_{j}^{h-1}) d z_{j}^{h-1}$
= $\int_{-\infty}^{\infty} Q(z_{j}^{h-1})^{2} P(z_{j}^{h-1}) d z_{j}^{h-1}$ $(P_{el}U)$ $\begin{pmatrix} \frac{1}{2} & \frac{1}{2$ $\begin{array}{ccc} & -\infty & \\ \hline & \searrow & \\ \hline & \searrow & \\ \end{array} \text{Vow} \left(\begin{array}{c} a \\ b \end{array} \right)$ (1000000)

Kaiming Initialization (He et al. '15)
\n
$$
W_{\ell} \quad \text{Van} \left\{ \begin{array}{l} \n\sqrt{a} \nu \left(\frac{a}{2} \frac{h}{2} \right) \right\} = \frac{\sqrt{a} \nu}{a} \left(\frac{2}{2} \frac{h}{2} \right) \\
\sqrt{a} \nu \left(W_{ij} \frac{h}{2} \right) = \frac{\sqrt{a} \nu}{a} \left(\frac{2}{2} \frac{h}{2} \right) \\
\sqrt{a} \nu \left(W_{ij} \frac{h}{2} \right) = \frac{2}{a} \\
\sqrt{a} \nu \left(\frac{2}{2} \frac{h}{2} \right) = \frac{\sqrt{a} \nu}{a} \left(\frac{2}{2} \right) \left(\frac{h}{2} \frac{h}{2} \frac{h}{2} \frac{h}{2} \frac{h}{2} \right) \\
\sqrt{a} \nu \left(\frac{2}{2} \right) = \frac{\sqrt{a} \nu}{a} \left(\frac{2}{2} \right) \left(\frac{h}{2} \frac{h}{2} \frac{h}{2} \frac{h}{2} \frac{h}{2} \right) \\
\sqrt{a} \nu \left(\frac{2}{2} \right) = \frac{\sqrt{a} \nu}{a} \left(\frac{2}{2} \right) \left(\frac{h}{2} \frac{h}{2} \frac{h}{2} \frac{h}{2} \right) \\
\sqrt{a} \nu \left(\frac{2}{2} \right) = \frac{\sqrt{a} \nu}{a} \left(\frac{2}{2} \right) \left(\frac{h}{2} \frac{h}{2} \frac{h}{2} \frac{h}{2} \right) \\
\sqrt{a} \nu \left(\frac{2}{2} \right) = \frac{\sqrt{a} \nu}{a} \left(\frac{2}{2} \right) \left(\frac{h}{2} \frac{h}{2} \frac{h}{2} \frac{h}{2} \right) \\
\sqrt{a} \nu \left(\frac{2}{2} \right) = \frac{\sqrt{a} \nu}{a} \left(\frac{2}{2} \right) \left(\frac{h}{2} \frac{h}{2} \frac{h}{2} \frac{h}{2} \right) \\
\sqrt{a} \nu \left(\frac{2}{2} \right) = \frac{\sqrt{a} \nu}{a} \left(\frac{2}{2} \right) \left(\frac{
$$

Initialization by Pre-training

- Use a pre-trained network as initialization
- And then fine-tuning

Gradient Clipping

- The loss can occasionally lead to a steep descent
- This result in immediate instability
- If gradient norm bigger than a threshold, set the gradient to the threshold. $y = \inf (xt) \inf_{y^{\dagger}} ||y||_2 > \text{thverhold}$

Batch Normalization (Ioffe & Szegedy, '14)

- Normalizing/whitening (mean $= 0$, variance $= 1$) the inputs is generally useful in machine learning.
	- Could normalization be useful at the level of hidden layers?
	- **• Internal covariate shift**: the calculations of the neural networks change the distribution in hidden layers even if the inputs are normalized
- **Batch normalization** is an attempt to do that:
	- Each unit's **pre-activation** is normalized (mean subtraction, std division)
	- During training, mean and std is computed for each minibatch (can be backproped!

Batch Normalization (loffe & Szegedy, '14)

Standard Network

Adding a BatchNorm layer (between weights and activation function)

Batch Normalization (Ioffe & Szegedy, '14)

- BatchNorm at training time
	- Standard backprop performed for each single training data
	- Now backprop is performed over entire batch.

Batch Normalization (loffe & Szegedy, '14)

What is BatchNorm actually doing?

- May not due to covariate shift (Santurkar et al. '18):
	- Inject non-zero mean, non-standard covariance Gaussian noise after BN layer: removes the whitening effect
	- Still performs well.
- Only training β , γ with random convolution kernels gives nontrivial performance (Frankle et al. '20)
- BN can use exponentially increasing learning rate! (Li & Arora '19)

More normalizations

- Layer normalization (Ba, Kiros, Hinton, '16)
	- Batch-independent
	- Suitable for RNN, MLP
- Weight normalization (Salimans, Kingma, '16)
	- Suitable for meta-learning (higher order gradients are needed)
-

• ….

Non-convex Optimization Landscape

Gradient descent finds global minima

Types of stationary points

- Stationary points: $x : \nabla f(x) = 0$
- Global minimum: $x: f(x) \leq f(x') \forall x' \in \mathbb{R}^d$
- Local minimum: $x: f(x) \leq f(x') \forall x' : ||x - x'|| \leq \epsilon$
- Local maximum: $x: f(x) \geq f(x') \forall x' : ||x - x'|| \leq \epsilon$
- Saddle points: stationary points that are not a local min/max

Landscape Analysis

- All local minima are global!
- Gradient descent can escape saddle points.

Strict Saddle Points (Ge et al. '15, Sun et al. '15)

• Strict saddle point: a saddle point and $\lambda_{\min}(\nabla^2 f(x)) < 0$

$$
\text{dist}(X) \cdot \text{dist}(X)
$$

Escaping Strict Saddle Points

- Noise-injected gradient descent can escape strict saddle points in polynomial time [Ge et al., '15, Jin et al., '17].
- Randomly initialized gradient descent can escape all strict saddle points asymptotically [Lee et al., '15].
	- Stable manifold theorem.
- Randomly initialized gradient descent can take exponential time to escape strict saddle points [Du et al., '17].

If 1) all local minima are global, and 2) are saddle points are strict, then noise-injected (stochastic) gradient descent finds a global minimum in polynomial time

What problems satisfy these two conditions

- Matrix factorization
- Matrix sensing
- Matrix completion
- Tensor factorization
- Two-layer neural network with quadratic activation

What about neural networks?

• Linear networks (neural networks with linear activations functions): all local minima are global, but there exists saddle points that are not strict [Kawaguchi '16].

$$
W_{H^1}W_{H^1} \cdots W_{I}X
$$

- Non-linear neural networks with:
	- Virtually any non-linearity,
	- Even with Gaussian inputs,
	- Labels are generated by a neural network of the same architecture,

There are many bad local minima [Safran-Shamir '18, Yun-Sra-Jadbaie '19].