Important Techniques
In Neural Network
Training




Gradient Explosion / Vanishing

* Deeper networks are harder to train:
* Intuition: gradients are products over layers
* Hard to control the learning rate



Activation Functions
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Activation Function
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Initialization

o Zero-initialization
 Large initialization
 Small initialization

 Design principles:
« Zero activation mean

 Activation variance remains same across layers



Kaiming Initialization (He et al. ’15)
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Kaiming Initialization (He et al. ’15)



Kaiming Initialization (He et al. ’15)



Kaiming Initialization (He et al. ’15)



Initialization by Pre-training

« Use a pre-trained network as initialization
* And then fine-tuning
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Gradient Clipping

* The loss can occasionally lead to a steep descent
 This result in immediate instability

« If gradient norm bigger than a threshold, set the gradient to the
threshold.

Loss




Batch Normalization (loffe & Szegedy, '14)

* Normalizing/whitening (mean = 0, variance = 1) the inputs is
generally useful in machine learning.
« Could normalization be useful at the level of hidden layers?

e Internal covariate shift: the calculations of the neural
networks change the distribution in hidden layers even if the
iInputs are normalized

 Batch normalization is an attempt to do that:
« Each unit’s pre-activation is normalized (mean subtraction,
std division)

 During training, mean and std is computed for each
minibatch (can be backproped!



Batch Normalization (loffe & Szegedy, '14)

Standard Network

Adding a BatchNorm layer (between weights and activation function)



Batch Normalization (loffe & Szegedy, '14)
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Batch Normalization (loffe & Szegedy, '14)

« BatchNorm at training time
« Standard backprop performed for each single training data
* Now backprop is performed over entire batch.
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Batch Normalization (loffe & Szegedy, ’14)
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What is BatchNorm actually doing?

« May not due to covariate shift (Santurkar et al. “18):

* Inject non-zero mean, non-standard covariance Gaussian
noise after BN layer: removes the whitening effect

 Still performs well.

» Only training £, y with random convolution kernels gives non-
trivial performance (Frankle et al. '20)

* BN can use exponentially increasing learning rate! (Li & Arora
'19)



More normalizations

« Layer normalization (Ba, Kiros, Hinton, '16)
« Batch-independent
« Suitable for RNN, MLP
« Weight normalization (Salimans, Kingma, '16)

« Suitable for meta-learning (higher order gradients are
needed)



Non-convex
Optimization Landscape
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Gradient descent finds global minima

Practice: gradient descent
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Understanding DL Requires Rethinking Generalization



Types of stationary points

» Stationary points: x : Vf(x) =0
* Global minimum:
X f(x) < f(xVx' € R?
e Local minimum:
x:fx) < fOVXlx—x| <e
e Local maximum:
X fx) = fOOVX L lx—x| <€
« Saddle points: stationary points
that are not a local min/max




Landscape Analysis

« All local minima are global!
» Gradient descent can escape saddle points.



Strict Saddle Points (Ge et al. ’15, Sun et al. ’15)

saddle point
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« Strict saddle point: a saddle point and 4. ( V2f(x)) < 0



Escaping Strict Saddle Points

» Noise-injected gradient descent can escape strict saddle points
in polynomial time [Ge et al., '15, Jin et al., "17].

 Randomly initialized gradient descent can escape all strict
saddle points asymptotically [Lee et al., "15].

« Stable manifold theorem.

 Randomly initialized gradient descent can take exponential time
to escape strict saddle points [Du et al., "17].
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What problems satisfy these two conditions

» Matrix factorization
« Matrix sensing

« Matrix completion
 Tensor factorization

» Two-layer neural network with quadratic activation



What about neural networks?

 Linear networks (neural networks with linear activations
functions): all local minima are global, but there exists saddle
points that are not strict [Kawaguchi "16].

* Non-linear neural networks with:
* Virtually any non-linearity,
* Even with Gaussian inputs,

« Labels are generated by a neural network of the same
architecture,

There are many bad local minima [Safran-Shamir '18, Yun-Sra-
Jadbaie "19].



