Important Techniques
In Neural Network
Training

Gradient Explosion / Vanishing

* Deeper networks are harder to train:
* Intuition: gradients are products over layers
* Hard to control the learning rate

Activation Functions

1

08y

06|

/ ' 10
‘// 08
/ 06
/ N 05
/ 04
/
02
00
0 1 2 3 4 5
-8 -6 -4 -2 0 2 4 6 8
tanh sigmoid
. ReLU
R(z) =max(0, z)
8 |
6
4
2
910 =5 0 5 10

Rectified Linear United

Activation Function

Sigmoid Hyperbolic Tangent

1 — 1
Traditional /

Non-Linear 0 0
Activation
; -1 -1
Functions 1 0 1 1 0 1
y=1/(1+e™) y=(eX-eX)/(eX+e™)
Remiﬁ‘:giﬁ‘;ar Unit Leaky RelLU Exponential LU
1 1 1
Modern / i
Non-Linear g ([— 0
Activation
Functions
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
X, X20
y=max(9,Xx) y=max(ax, X) y={a(ex_1),x<e

a = small const. (e.g. 0.1)

Initialization

o Zero-initialization
 Large initialization
 Small initialization

 Design principles:
« Zero activation mean

 Activation variance remains same across layers

Kaiming Initialization (He et al. ’15)

W~ 0,3 .
- bW =0

» Designed for RelLU activation
« 30-layer neural network

0.95
0.9+

2 0.85
w

1

08+ — EﬁlVar[w,] =1 ours
075H ___. AVar[w] =1 Xavier
|
0 1 2 3 4 5 6 7 8 9

Kaiming Initialization (He et al. ’15)

Kaiming Initialization (He et al. ’15)

Kaiming Initialization (He et al. ’15)

Initialization by Pre-training

« Use a pre-trained network as initialization
* And then fine-tuning

Source Domain ; Target Domain

Output Dimension: N Output Dimension: M
L L J

) H
T ! T
Initialize

Wei:g hts

Source Model — Source Model

Target
Dataset
(Dog Breeds)

Source Dataset
(ImageNet)

Gradient Clipping

* The loss can occasionally lead to a steep descent
 This result in immediate instability

« If gradient norm bigger than a threshold, set the gradient to the
threshold.

Loss

Batch Normalization (loffe & Szegedy, '14)

* Normalizing/whitening (mean = 0, variance = 1) the inputs is
generally useful in machine learning.
« Could normalization be useful at the level of hidden layers?

e Internal covariate shift: the calculations of the neural
networks change the distribution in hidden layers even if the
iInputs are normalized

 Batch normalization is an attempt to do that:
« Each unit’s pre-activation is normalized (mean subtraction,
std division)

 During training, mean and std is computed for each
minibatch (can be backproped!

Batch Normalization (loffe & Szegedy, '14)

Standard Network

Adding a BatchNorm layer (between weights and activation function)

Batch Normalization (loffe & Szegedy, '14)

7 — z w;l; + b
]
7 [Batch normalization 5 ‘ A
T "f (Z) y

Minibatch mean

Minibatch size
[
/ Minibatch standard deviation

Zi — Up .
./i=}’ui+ﬁ

|
f
|
l
Jl'
B &~ B
| |08 lZ(z'—#s)"' M eTre
B. t JB+E

Batch Normalization (loffe & Szegedy, '14)

« BatchNorm at training time
« Standard backprop performed for each single training data
* Now backprop is performed over entire batch.

oDiv _ —1(2 3/ dDiv
oz 2 SRl u

=1
dDiv -1 dDiv

dDiv _ dDiv 1 N oDiv 2(z; — ug) N dDiv 1
dz; Oy [6Z+e 00F B dug B

o) —

Batch normalization

. oDi
The rest of backprop continues from ?w
1

Batch Normalization (loffe & Szegedy, ’14)

Learning Rate=0.1 Learning Rate=0.5
100 100

X =

- >

O O

© ©

| - | -

0 —— Standard 5 —— Standard

g 5 —— Standard + BatchNorm & 3° —— Standard + BatchNorm
o o

£ £

£ £

(© ©

| - | -

- -

0 5k 10k 15k 0 5k 10k 15k

Steps Steps

What is BatchNorm actually doing?

« May not due to covariate shift (Santurkar et al. “18):

* Inject non-zero mean, non-standard covariance Gaussian
noise after BN layer: removes the whitening effect

 Still performs well.

» Only training £, y with random convolution kernels gives non-
trivial performance (Frankle et al. '20)

* BN can use exponentially increasing learning rate! (Li & Arora
'19)

More normalizations

« Layer normalization (Ba, Kiros, Hinton, '16)
« Batch-independent
« Suitable for RNN, MLP
« Weight normalization (Salimans, Kingma, '16)

« Suitable for meta-learning (higher order gradients are
needed)

Non-convex
Optimization Landscape

W

Gradient descent finds global minima

Practice: gradient descent
OL(6(t))
-1
00(t)

O(t+ 1)« 0(t)

® True labels

2.0 . . .
§ ® Random labels Optimization
S
s error -> 0 for
®)
= both true
S 1.0
8 labels and
£05 random labels !
o

0.0

0 5 10 15 20 25

Thousand steps
Zhang Bengio Hardt Recht Vinyals 2017

Understanding DL Requires Rethinking Generalization

Types of stationary points

» Stationary points: x : Vf(x) =0
* Global minimum:
X f(x) < f(xVx' € R?
e Local minimum:
x:fx) < fOVXlx—x| <e
e Local maximum:
X fx) = fOOVX L lx—x| <€
« Saddle points: stationary points
that are not a local min/max

Landscape Analysis

« All local minima are global!
» Gradient descent can escape saddle points.

Strict Saddle Points (Ge et al. ’15, Sun et al. ’15)

saddle point

NEANON A

« Strict saddle point: a saddle point and 4. (V2f(x)) < 0

Escaping Strict Saddle Points

» Noise-injected gradient descent can escape strict saddle points
in polynomial time [Ge et al., '15, Jin et al., "17].

 Randomly initialized gradient descent can escape all strict
saddle points asymptotically [Lee et al., "15].

« Stable manifold theorem.

 Randomly initialized gradient descent can take exponential time
to escape strict saddle points [Du et al., "17].

50 A

If 1) all local minima are global, and 2)
are saddle points are strict, then 2 50 p
noise-injected (stochastic) gradient S| G @ .
descent finds a global minimum in -1_52(3;_1-(7\/0/

polynomial time X, T

objective function
(42
o

What problems satisfy these two conditions

» Matrix factorization
« Matrix sensing

« Matrix completion
 Tensor factorization

» Two-layer neural network with quadratic activation

What about neural networks?

 Linear networks (neural networks with linear activations
functions): all local minima are global, but there exists saddle
points that are not strict [Kawaguchi "16].

* Non-linear neural networks with:
* Virtually any non-linearity,
* Even with Gaussian inputs,

« Labels are generated by a neural network of the same
architecture,

There are many bad local minima [Safran-Shamir '18, Yun-Sra-
Jadbaie "19].

