Clarke Differential

Subdifferential and Subgradient

 $\textbf{Definition:} \text{ Given } f: \mathbb{R}^d \rightarrow \mathbb{R}, \text{ for every } x, \text{ the subdifferential set } \text{}$ is defined as $\partial_s f(x) \triangleq \{ s \in \mathbb{R}^d : \forall x' \in \mathbb{R}^d, f(x') \geq f(x) + s^{\top}(x' - x) \}.$ The elements in the subdifferential set are subgradients.

Subdifferential and Subgradient

 $\textbf{Definition:} \text{ Given } f: \mathbb{R}^d \rightarrow \mathbb{R}, \text{ for every } x, \text{ the subdifferential set } \text{}$ is defined as $\partial_s f(x) \triangleq \{ s \in \mathbb{R}^d : \forall x' \in \mathbb{R}^d, f(x') \geq f(x) + s^{\top}(x' - x) \}.$ The elements in the subdifferential set are subgradients.

Subdifferential is not enough

 $\textbf{Definition:} \text{ Given } f: \mathbb{R}^d \rightarrow \mathbb{R}, \text{ for every } x, \text{ the subdifferential set } \text{}$ is defined as $\partial_s f(x) \triangleq \{ s \in \mathbb{R}^d : \forall x' \in \mathbb{R}^d, f(x') \geq f(x) + s^{\top}(x' - x) \}.$ The elements in the subdifferential set are subgradients.

Clarke Differential

 $\mathsf{Definition:}~\mathsf{Given}~f : \mathbb{R}^d \to \mathbb{R},$ for every $x,$ the Clark differential is defined as $\partial f(x) \triangleq \text{conv}\left(\left\{s \in \mathbb{R}^d : \exists \{x_i\}_{i=1}^\infty \rightarrow x, \{\nabla f(x_i)\}_{i=1}^\infty \rightarrow s\}\right).$ The elements in the subdifferential set are subgradients.

When does Clarke differential exists

Definition (Locally Lipschitz): $f: \mathbb{R}^d \to \mathbb{R}$ is locally Lipchitz if $\forall x \in \mathbb{R}^d$, there exists a neighborhood S of x, such that f is Lipchitz in S .

Positive Homogeneity

 $\mathsf{Definition}$ $f \colon \mathbb{R}^d \to \mathbb{R}$ is positive homogeneous of degree L if $f(\alpha x) = \alpha \right|_0^L f(x)$ for any $\alpha \geq 0$.

Positive Homogeneity

Positive Homogeneity

Positive Homogeneity and Clark Differential

 ${\sf Lemma}\colon {\sf Suppose} f: \mathbb{R}^d \to \mathbb{R}$ is Locally Lipschitz and L -positively homogeneous. For any $x \in \mathbb{R}^d$ and $s \in \partial f(x)$, we have $\langle s, x \rangle = Lf(x)$.

Norm Preservation

Balanced initializa- (a) tion, squared norm differences.

 (b) Balanced initialization, squared norm ratios.

(c) Unbalanced Initialization, squared norm differences.

(d) Unbalanced initialization, squared norm ratios.

Gradient flow and gradient inclusion

Discrete-time dynamics can be complex. Let's use continuoustime dynamics to simplify:

Gradient flow:
$$
x_{t+1} = x_t - \eta \nabla f(x_t) \Rightarrow \frac{x(t)}{dt} = -\nabla f(x(t))
$$

Gradient inclusion: $\frac{dx(t)}{dt} \in \partial f(x(t))$

Norm preservation by gradient inclusion

Theorem (Du, Hu, Lee '18) Suppose $\alpha > 0$, $f(x; (W_{H+1}, ..., \alpha W_i, ..., W_1)) = \alpha f(x, (W_{H+1}, ..., W_1)),$ I.e., predictions are 1-homogeneous in each layer. Then for every pair of layers $(i, j) \in [H + 1] \times [H + 1]$, the gradient inclusion maintains: for all $t\geq 0$,

$$
\frac{1}{2}||W_h(t)||_F^2 - \frac{1}{2}||W_h(0)||_F^2 = \frac{1}{2}||W_h(t)||_F^2 - \frac{1}{2}||W_h(0)||_F^2.
$$