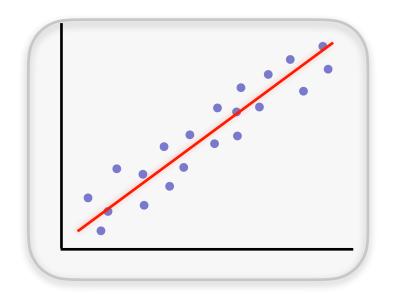
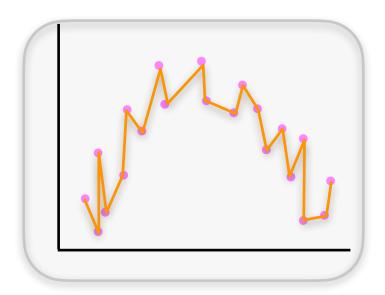
Approximation Theory

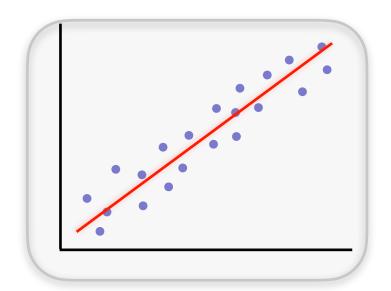
Expressivity / Representation Power

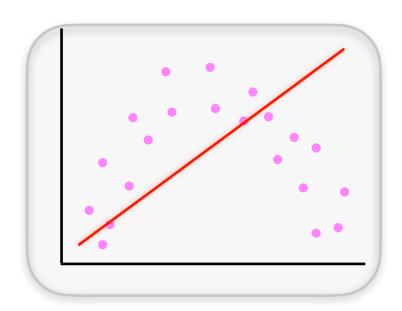




Expressive: Functions in class can represent "complicated" functions.

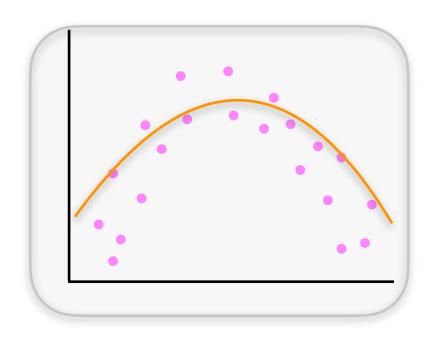
Linear Function





best linear fit

Review: generalized linear regression



Transformed data:

$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix}$$

Hypothesis: linear in h

$$y_i \approx h(x_i)^T w$$

Review: Polynomial Regression



Approximation Theory Setup

 Goal: to show there exists a neural network that has small error on training / test set.

Set up a natural baseline:

```
\inf_{f \in \mathscr{F}} L(f) \text{ v.s. } \inf_{g \in \text{ continuous functions}} L(g)
```

Example

Decomposition

Specific Setups

• "Average" approximation: given a distribution μ

$$||f - g||_{\mu} = \int_{x} |f(x) - g(x)| d\mu(x)$$

"Everywhere" approximation

$$||f - g||_{\infty} = \sup_{x} |f(x) - g(x)| \ge ||f - g||_{\mu}$$

Polynomial Approximation

Theorem (Stone-Weierstrass): for any function f, we can approximate it on any compact set Ω by a sufficiently high degree polynomial: for any $\epsilon > 0$, there exists a polynomial p of sufficient high degree, s.t., $\max_{x \in \Omega} |f(x) - p(x)| \le \epsilon.$

Intuition: Taylor expansion!

Kernel Method

Polynomial kernel

Gaussian Kernel

1D Approximation

Theorem: Let $g:[0,1] \to R$, and ρ -Lipschitz. For any $\epsilon > 0$, \exists 2-layer neural network f with $\lceil \frac{\rho}{\epsilon} \rceil$ nodes, threshold activation: $\sigma(z): z \mapsto \mathbf{1}\{z \geq 0\}$ such that $\sup_{x \in [0,1]} |f(x) - g(x)| \leq \epsilon.$

Proof of 1D Approximation

Multivariate Approximation

Theorem: Let g be a continuous function that satisfies $||x-x'||_{\infty} \leq \delta \Rightarrow |g(x)-g(x')| \leq \varepsilon$ (Lipschitzness). Then there exists a 3-layer ReLU neural network with $O(\frac{1}{\delta^d})$ nodes that satisfy

$$\int_{[0,1]^d} |f(x) - g(x)| \, dx = \|f - g\|_1 \le \epsilon$$

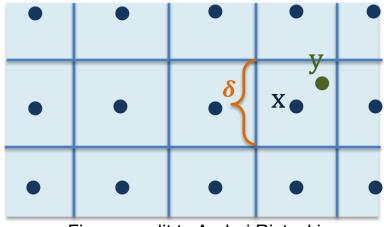
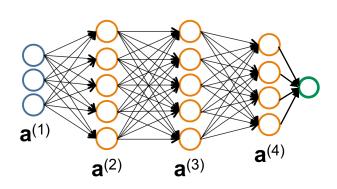


Figure credit to Andrej Risteski



Partition Lemma

Lemma: let g, δ, ϵ be given. For any partition P of $[0,1]^d$, $P = (R_1, ..., R_N)$ with all side length smaller than δ , there exists $(\alpha_1, ..., \alpha_N) \in \mathbb{R}^N$ such that

$$\sup_{x \in [0,1]^d} |g(x) - h(x)| \le \epsilon \text{ with } h(x) := \sum_{i=1}^N \alpha_i \mathbf{1}_{R_i}(x).$$

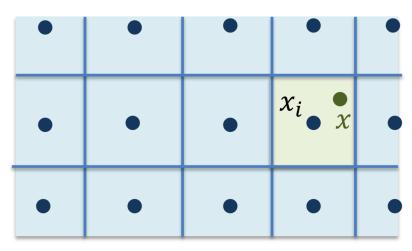


Figure credit to Andrej Risteski

Proof of Partition Lemma

Proof of Multivariate Approximation Theorem

Proof of Multivariate Approximation Theorem

Proof of Multivariate Approximation Theorem