(ap)
<FT S
H O
TS
) £
O n

CSE543: Deep Learning

Instructor: Simon Du

Teaching Assistant: Yancheng Liang, Siting Li, Yiping Wang

Course Website (contains all logistic information): https://courses.cs.washington.edu/
courses/cseb43/24au/

Questions: Ed Discussion

Announcements: Canvas

Homework: Canvas

CSE543: Deep Learning

What this class is:

 Fundamentals of DL: Neural network architecture, approximation

properties, optimization, generalization, generative models,
representation learning

* Preparation for further learning / research: the field is fast-

moving, you will be able to apply the fundamentals and teach
yourself the latest

What this class is not:

 An easy course: mathematically easy
* A survey course: laundry list of algorithms

« An application course: implementation of different architectures on
different datasets

Prerequisites

= Working knowledge of:

= Linear algebra

= Vector calculus

= Probability and statistics

= Algorithms

= Machine leanring (CSE 446/546)
= Mathematical maturity

= “Can | learn these topics concurrently?”

Lecture

= Time: Tuesday and Thursday 11:30 AM - 12:50PM
= CSE2 GO01 or Zoom (see website for the schedule)
= Slides + handwritten notes (e.g., proofs)

= Zoom link on Canvas

= Tentative schedule on course website

Homework (40%)

= 2 homework (20%+20%)

0 Each contains both theoretical questions and
programming questions

0 Related to course materials

0 Collaboration okay but must write who you collaborated
with. You must write, submit, and understand your
answers and code.

0 Submit on Canvas
0 Must be typed
0 Two late days
O Tentative timeline:
0 HW 1 due: 10/24
0 HW 2 due: 11/7

Course Project (60%)

= Group of 2-4.

= Topic: literature review (state-of-the-art) or original
research.

= Post on Ed Discussion to form teams.

= Some potentlal topics are in listed on Canvas. OK to do a
project '8a listed.

= You can work on a project related to your research.
= Proposal (due: 10/10): 5%
= Format: NeurlPS Latex format, ~1 - 1.5 pages
= Presentations on (12/3 and 12/5 on Zoom): 20%
= Final report (due: 12/13): 35%
= Format: NeurlPS Latex format, ~8 pages
= Submit on Canvas

Possible Topics

= Approximation properties

= Advanced optimization methods

= Optimization theory for deep learning
= Generalization theory for deep learning
= Deep reinforcement learning

= |Implicit regularization

= Meta-learning

= Robustness

= Neural network compression

= Pre-training, fine-tuning, RLHF

= Deep learning application

Communication Chanels

= Announcements
= Canvas
= questions about class, homework help
Ed Discussion
Office hours:
Simon Du: Tu 10:00 - 11:00 AM, CSE2 312
Yancheng Liang: W 13:00 - 14:00 PM, on Zoom
Siting Li: Tu 16:00 - 17:00, CSE2 151
Yiping Wang: W 16:00 - 17:00, CSE2 151
Regrade requests / Personal concerns:
0 Emaill to instructor or TAs

Topic 1: Review (Today)

= ML Review: training, generalization

= Neural network basics: fully-connected neural network,
gradient descent

Topic 2: Approximation Theory

= \Why neural networks can express the (regression,
classification, ...) function you want?

= Construction of such desired neural networks
= Universal approximation theorem

Topic 3: Optimization

= Review: Back-propagation
= Auto-differentiation

= Advanced optimizers: momentum (Nesterov acceleration),
adaptive method (AdaGrad, Adam)

= Techniques for improving optimization: batch-norm, layer-

norm, .. » /}{C
= Theory: global convergence of gradient of over-

parameterized neural networks

= Neural Tangent Kernel

tee eV

Topic 4: Generalization \/\”

/DW’()//W/?}(
= Measures of generalization
= Double descent
= Techniques for improving generalization
= (Generalization theory beyond VC-dimension
= |mplicit regularization
= Why NN outperforms kernel

Topic 5: Architecture

Convolutional neural network
Recurrent neural network
= LSTM
Attention-based neural network
= Transformer
General framework

Topic 6: Representation Learning / Pre-Training

= Multi-task representation learning
= Auto-regressive pre-training

= Multi-modal learning

= Contrastive learning

= Meta-learning

= Data

= Theory

Topic 7: Generative Models

= Generative adversarial network
= Variational Auto-Encoder

= Energy-based models

= Normalizing flows

= Diffusion models

@ Spotify’

Discover Weekly amazon

~~—Tprime
98% Match

ML uses past data to make predictions

MileagePlus Explorer
oooooo A owwo

ads

(jté

Supervised Learning Process (jfum(fl\lvl va)
7”\, STV v
qcﬁg Jew T K, juvfovwﬁ

d Y7404 @
Collect a dataset ¢, <§01 k3 cloas] iy (%J[? V20
R V@/@WW > el pelurk

Decide on a model 7[; RO{ /9 R \

Find the function which fits the data best

6’ (1Y) Choose a loss function 1 (f(?@) —) R
Jog 154 1% Pick the functlon which mlngnlzes loss T>
R

on data %é— /EW(VJ) (& /\/\>J(W>Q

?\ - +
Use function to make prediction on new

Aiew
examples Anewv ﬁ jLa:g Lu()(

A
pn/oﬂt(’(t% Af (WW> /A\//%WW -) E(H

18

Framework

FiK f6¥

[<v () iwﬁjﬁﬁ(ﬁ(ﬁbyo

Neural Networks (\(WQW;{C{?‘()
A
A
N
NN SRS
V‘v’ V%
v'fgo-‘

“*'3' sv‘ IR

o\\ ‘\\"//"“
/’o
md@ /WWM/““‘(}L\/'\L

Q0 nod ¢
() Snp o e Oﬁﬁ
(VT to e
}% il - ead Jbb o)
% WO\'?W é/p\

>ﬂM

/

(j vy
4 e)

“bias unit”

-

/ N\

[To N\ X
VOUUN

Based on slide by Andrew Ng

Single Node

Lo
X = Cljl 0 —
L2
- :ES -
J —he(x) = g(87x)
B 1
14 e 0Tx
1

Binary
Logistic
Regression

Slide by Andrew Ng

Neural Network

(L) —
U =1

Layer 1

(Input Layer)

Layer 2 Layer 3

(Hidden Layer) (Output Layer)

=g (360

11

OU) = weight matrix stores parameters

© i’ . al) = “activation” of unit j in layer j
A'A gz;? a; —>h9 (X) . . .
e from layerj to layerj + 1

a&z) = (@%):130 + @(1):13 + @(1):1:2 + @%)333)
a§2) = g(@(l)az + @(1)x1 + @():13 + @;?333)

aéz) = g(@(l)xo + @()a: + @()x + @%)xg)
r0(0) = al? = oOFal? +0Dal? + 0l + 0l

If network has Sj units in Iayerj and S;,; units in layer j+1,
then OV has dlmen5|on Siv1 X (S+1)

@(1) c R3X4 @(2) c R1X4

Slide by Andrew Ng

Multi-layer Neural Network - Binary Classification

' L(y,y) =ylog(y) + (1 — y)log(1 - ¥)
:7/\ — g(@(L)a(L)) @ 1 Binary
8\L) = Logistic
I +e Reiression

Multi-layer Neural Network - Binary Classification

al) = x

(1)
' L(y,y) = ylog(y) + (1 — y)log(1l —)
A~ L L
Y = g(@()CL()) 1 Binary
0(z) = max{0,z} g(z) = — Logistic
I +e* Regression

Multiple Output Units: One-vs-Rest

Multi-class
Logistic
Regression
[1] [0 | [0 | [0 |
0 1 0 0
h@(X) ~ 0 he (X) ~ 0 h@(X) ~ 1 h@(X) ~ 0
| 0 | 0 | 0 1
when pedestrian when car when motorcycle when truck

Slide by Andrew Ng 17

Multi-layer Neural Network - Regression

al) = x

o(z) = max{0, z} Regression

oD =

OS2
2) — o (.2 RS OVAR
a = g\z LS SFLN (5)
g () 3(1) ///‘\\\ <N a

4D — @0, O al?) at®)

L(y,y) =ylog(y) + (1 —y)log(1 — y)
1

1 +e=

al+) = g (Z(l+1)>

:/g\ — g(@(L)a(L)) 2(z) =

Gradient Descent: ©) < @) _ nVew L(y,y) W/

Gradient Descent: @(l) < @(l) — nv@(z)L(% Z//\) Vi

Seems simple enough, why are packages like PyTorch, Tensorflow,
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation

2. Convenient libraries

3. GPU support

Gradient Descent:

Seems simple enough|
Theano, Cafe, MxNet {

1. Automatic differ

2. Convenient Iibra‘

class Net(nn.Module):

def

def

__init__(self):

super(Net, self).__init__()

1 input image channel, 6 output channels, 3x3 square convolution
kernel

self.convl = nn.Conv2d(1, 6, 3)

self.conv2 = nn.Conv2d(6, 16, 3)

an affine operation: y = Wx + b

self.fcl = nn.Lineax(16 * 6 x* 6, 120) # 6*6 from image dimension
self.fc2 = nn.Linear (120, 84)

self.fc3 = nn.Linear(84, 10)

forward(self, x):

Max pooling over a (2, 2) window

x = F.max_pool2d(F.relu(self.convli(x)), (2, 2))

If the size is a square you can only specify a single number

X X X X

retu

.max_pool2d(F.relu(self.conv2(x)), 2)
.view(-1, self.num_flat_features(x))
.relu(self.fcl1(x))

.relu(self.fc2(x))

self.fc3(x)

rn X

m M X M

create your optimizer

optimizer = optim.SGD(net.parameters(), 1lr=0.01)

in your training loop:

optimizer.zero_grad() # zero the gradient buffers

output = net(input)

loss = criterion(output, target)
loss.backwazrd()

optimizer.step() # Does the update

