
CSE 543
Simon Du

 



CSE543: Deep Learning

Instructor: Simon Du  
Teaching Assistant: Yancheng Liang, Siting Li, Yiping Wang 
Course Website (contains all logistic information): https://courses.cs.washington.edu/
courses/cse543/24au/ 
Questions: Ed Discussion 
Announcements: Canvas 
Homework: Canvas



What this class is:
• Fundamentals of DL: Neural network architecture, approximation 

properties, optimization, generalization, generative models, 
representation learning 

• Preparation for further learning / research: the field is fast-
moving, you will be able to apply the fundamentals and teach 
yourself the latest

What this class is not:
• An easy course: mathematically easy 
• A survey course: laundry list of algorithms 
• An application course: implementation of different architectures on 

different datasets

CSE543: Deep Learning



Prerequisites

■ Working knowledge of: 
■ Linear algebra 
■ Vector calculus 
■ Probability and statistics 
■ Algorithms 
■ Machine leanring (CSE 446/546) 

■ Mathematical maturity 
■ “Can I learn these topics concurrently?”



Lecture

■ Time: Tuesday and Thursday 11:30 AM - 12:50PM 
■ CSE2 G01 or Zoom (see website for the schedule)  
■ Slides + handwritten notes (e.g., proofs) 
■ Zoom link on Canvas 
■ Tentative schedule on course website



Homework (40%)

■ 2 homework (20%+20%) 
□ Each contains both theoretical questions and 

programming questions 
□ Related to course materials 
□ Collaboration okay but must write who you collaborated 

with. You must write, submit, and understand your 
answers and code. 

□ Submit on Canvas 
□ Must be typed 
□ Two late days 
□ Tentative timeline: 
□ HW 1 due: 10/24 
□ HW 2 due: 11/7



Course Project (60%)

■ Group of 2 - 4. 
■ Topic: literature review (state-of-the-art) or original 

research. 
■ Post on Ed Discussion to form teams. 
■ Some potential topics are in listed on Canvas. OK to do a 

project on listed. 
■ You can work on a project related to your research. 
■ Proposal (due: 10/10): 5% 

■ Format: NeurIPS Latex format, ~1 - 1.5 pages 
■ Presentations on (12/3 and 12/5 on Zoom): 20% 
■ Final report (due: 12/13): 35% 

■ Format: NeurIPS Latex format, ~8 pages 
■ Submit on Canvas



Possible Topics

■ Approximation properties 
■ Advanced optimization methods 
■ Optimization theory for deep learning 
■ Generalization theory for deep learning 
■ Deep reinforcement learning 
■ Implicit regularization 
■ Meta-learning 
■ Robustness 
■ Neural network compression 
■ Pre-training, fine-tuning, RLHF 
■ Deep learning application 
■ …



Communication Chanels

■ Announcements 
■ Canvas 

■ questions about class, homework help 
□ Ed Discussion 
□ Office hours: 
□ Simon Du: Tu 10:00 - 11:00 AM, CSE2 312 
□ Yancheng Liang: W 13:00 - 14:00 PM, on Zoom 
□ Siting Li: Tu 16:00 - 17:00,  CSE2 151 
□ Yiping Wang: W 16:00 - 17:00, CSE2 151 

□ Regrade requests / Personal concerns: 
□ Email to instructor or TAs



Topic 1: Review (Today)

■ ML Review: training, generalization 
■ Neural network basics: fully-connected neural network, 

gradient descent



Topic 2: Approximation Theory

■ Why neural networks can express the (regression, 
classification, …) function you want? 

■ Construction of such desired neural networks 
■ Universal approximation theorem



Topic 3: Optimization

■ Review: Back-propagation 
■ Auto-differentiation 
■ Advanced optimizers: momentum (Nesterov acceleration), 

adaptive method (AdaGrad, Adam) 
■ Techniques for improving optimization: batch-norm, layer- 

norm, .. 
■ Theory: global convergence of gradient of over-

parameterized neural networks 
■ Neural Tangent Kernel

wide

F



Topic 4: Generalization

■ Measures of generalization 
■ Double descent 
■ Techniques for improving generalization 
■ Generalization theory beyond VC-dimension 
■ Implicit regularization 
■ Why NN outperforms kernel

tee error

xity



Topic 5: Architecture

■ Convolutional neural network 
■ Recurrent neural network 

■ LSTM 
■ Attention-based neural network 

■ Transformer 
■ General framework



Topic 6: Representation Learning / Pre-Training

■ Multi-task representation learning 
■ Auto-regressive pre-training 
■ Multi-modal learning 
■ Contrastive learning 
■ Meta-learning 
■ Data 
■ Theory



Topic 7: Generative Models

■ Generative adversarial network 
■ Variational Auto-Encoder 
■ Energy-based models 
■ Normalizing flows 
■ Diffusion models



ML uses past data to make predictions



Supervised Learning Process

Collect a dataset 

Decide on a model  

Find the function which fits the data best 
Choose a loss function 
Pick the function which minimizes loss 
on data 

Use function to make prediction on new 
examples

18

fEF
a functionclass

Xiii D iodinear
Xi inputead imagetxkwtx.forsomewyi40 lk classifilating kernels

regression trees

f 2ᵈ p
neuralnetwork

4 1 97 Acting R
ogistilloss

F 114 4472117
tht

it f illinarnew
fu WX

prediction
Xnew Ynew

at 11mi



Framework

19

Fix EF
God test error

et gnote tiny
Ltr ectail Yi

Lte t Ltr f Lte t tilt

FILM
approximation error

LIVIA FI
GUT optimization error

HelfHUNT generalizationerror



Neural Networks intermediate

layer

in

Jut2d

nod euvontun k
eachnode a map

output of neuron

1 input
2
activation

to the input of
neurons

each link has
3
output a weight ER



Single'Node'

9'

Sigmoid'(logis1c)'ac1va1on'func1on:' g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx
h✓(x) = g (✓|x)

x0 = 1x0 = 1

“bias'unit”'

h✓(x) =
1

1 + e�✓Tx

x =

2

664

x0

x1

x2

x3

3

775 ✓ =

2

664

✓0
✓1
✓2
✓3

3

775
✓0

✓1

✓2

✓3

Based'on'slide'by'Andrew'Ng'

X Binary 
Logistic 
Regression

f



h✓(x) =
1

1 + e�✓Tx

Neural'Network'

11'

Layer'3'
(Output'Layer)'

Layer'1'
(Input'Layer)'

Layer'2'
(Hidden'Layer)'

x0 = 1bias'units' a(2)0

Slide'by'Andrew'Ng'

Xel as 1 a g xi

08
OH

hoN g a



14'

 ai
(j) = “ac1va1on”'of'unit'i''in'layer'j 

Θ(j) = weight'matrix'stores'parameters'
from'layer'j to'layer'j +'1 

If'network'has'sj'units'in'layer'j and(sj+1 units'in'layer'j+1,'
then'Θ(j) has'dimension'sj+1 × (sj+1)'''''''''''''''''''''''''''''''.'

⇥(1) 2 R3⇥4 ⇥(2) 2 R1⇥4

Slide'by'Andrew'Ng'

h✓(x) =
1

1 + e�✓Tx

⇥(1) ⇥(2)



Multi-layer Neural Network - Binary Classification

a(1) = x
…

…

5

a(2) = g(⇥(1)a(1))

a(l+1) = g(⇥(l)a(l))

by = g(⇥(L)a(L))
L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

g(z) = 1
1 + e−z

Binary 
Logistic 
Regression

pointwise



Multi-layer Neural Network - Binary Classification

a(1) = x
…

…

5

by = g(⇥(L)a(L))
L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

g(z) = 1
1 + e−z

Binary 
Logistic 
Regression

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}



Mul1ple'Output'Units:''One@vs@Rest'

17'

Pedestrian' Car' Motorcycle' Truck'

h⇥(x) 2 RK

when'pedestrian''''''''''''when'car''''''''''''''when'motorcycle'''''''''''''when'truck'

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We'want:'

Slide'by'Andrew'Ng'

Multi-class 
Logistic 
Regression



Multi-layer Neural Network - Regression

a(1) = x
…

…

5

Regression

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}by = ⇥(L)a(L)
L(y, by) = (y � by)2



a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))

…
…

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

5

g(z) = 1
1 + e−z

⇥(l)  ⇥(l) � ⌘r⇥(l)L(y, by) 8lGradient Descent:

by = g(⇥(L)a(L))



⇥(l)  ⇥(l) � ⌘r⇥(l)L(y, by) 8l

Seems simple enough, why are packages like PyTorch, Tensorflow, 
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation 

2. Convenient libraries 

3. GPU support 

Gradient Descent:



Gradient Descent:
⇥(l)  ⇥(l) � ⌘r⇥(l)L(y, by) 8l

Seems simple enough, why are packages like PyTorch, Tensorflow, 
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation 

2. Convenient libraries 

Gradient Descent:


