
Deep Reinforcement Learning

University of Washington

• Data: (x, y)
• Goal: Learn a

function f(x)=y
• Examples:

Classification,
Regression, …

2

Supervised Learning

University of Washington

• Data: x
• Goal: Learn underlying

structure of the data
• Examples:

Representation Learning,
Contrastive Learning,
Autoregressive
Pretraining

3

Self-supervised Learning

University of Washington

• Goal: Learn a
policy to maximize
reward
• Examples: Chess,

Go, Poker, Self-
driving

4

Reinforcement Learning

University of Washington

• Goal: Collect as much reward as possible.

5

Markov Decision Process

Agent

Environment

ActionState
Reward

University of Washington 6

Markov Decision Process

Agent

Environment

Action a" =
$(&')

State:
&')*~,(⋅∣ &', 0')

Reward:
1')* = 1(&', 0')

Maximize total discounted reward ∑3'1'.
2 0.99 0.9

University of Washington

• Policy: $ & = 0.
• Discount factor: 3 ∈ (0,1).
• Value function: 78 &9 = :8[∑' 3'1'], where &9, 09, 19, &*, 0*, 1*, … is

a trajectory sampled by using policy $.
• Q function: >8 &9, 09 = :8[∑' 3'1(&', 0')].
• Optimal policy: $∗ = argmax8 V8(s).
• There exists an optimal policy that achieves the argmax for all &

simultaneously!

7

Markov Decision Process

University of Washington

• Optimal Q function: >8∗ &9, 09 = :8∗[∑' 3'1(&', 0')].

• Property: $∗ & = argmaxF>8∗(&, 0).

• If we know >∗, we know $∗.

8

Optimal Q Function

University of Washington

• If we know 1(&, 0) and ,(&G ∣ &, 0), we can use dynamic programming
to solve the optimal policy.
• How to learn the optimal policy without the knowledge of 1(&, 0) and
,(&G ∣ &, 0)?

• Collect samples!

9

Reinforcement Learning

Erl 1

v15 a

Fein data

pls sial Fifi

University of Washington

• 3361 possible board configurations in Go.
• Impossible to enumerate.

• Theorem: Ω(IJ) samples are necessary for learning MDP without
structures, where S is # of states and A is # of actions.

10

Challenge: Large State Space

University of Washington

• Challenge in RL: large state and action space.
• Many states and actions are similar and have similar >8∗.
• Use a function class ℱ = {MN} to approximate Q function.

• Suppose we have a dataset P = {>8∗ &, 0 }, then we can fit a MN to
approximate >8∗:

Q∗ = argminN ∑ T,F ∈P MN &, 0 − >8∗ &, 0
V

.

11

Function Approximation

Sastri

University of Washington

• Dataset: trajectories &9, 09, 19, &*, 0*, 1*, … , &W sampled from some
behavior policy $X.

• Challenge: unknown >8∗(&, 0).

12

Offline Reinforcement Learning

University of Washington

• Reminder: Markov-Decision Process(MDP)

13

Q-learning

State:
&Y)* = ,(⋅∣ &Y, 0Y)

Reward:
1Y)* = 1(&Y, 0Y)

University of Washington

• Value-based method:
• Evaluate all the states, then find the action leading to the best state.

• Reminder: Value function and Q function:

•78 & = Z8[∑Y 3Y1Y ∣ &]
• We need to know which action leads to the given reward:

•Q8 &, 0 = Z8[∑Y 3Y1Y ∣ &, 0]

14

Q-learning

University of Washington

Q-function:

Q8 &, 0 = Z8[\
Y
3Y1Y ∣ &, 0]

• Target: derive the Q function for the optimal policy $∗, >∗
• How to solve this system?

• Of course, we can use Monte Carlo’s Method to estimate Q function.
• But it takes Ω(IJY) sample trajectories.

• Can we do better?

15

Q-learning

University of Washington

Q-function:

Q8 &, 0 = Z8[\
Y
3Y1Y ∣ &, 0]

• Notice that Q function should satisfy the successor relationship;
• Bellman's Equation:

• Q∗ &, 0 = 1 &, 0 + 3Z8∗[7∗ &G ∣ &, 0]
• 7∗ & = max

F
>∗(&, 0)

• Then we can solve it with polynomial samples!

16

Q-learning: Tabular learning

University of Washington

• First, initialize > ⋅ = 0;
• Then we do iterative DP:
• Until convergency, do:
• For &, 0 ∈ I×J:
• Update Q: > &, 0 ← *

`a,b
∑TcdT,FcdF 1e + 37 &e)*

• For & ∈ I:
• Update V: 7 & ← max

F
>(&, 0)

17

Q-learning: Tabular learning

University of Washington

• When we combine Deep Learning with Q-learning, we get DQN.
• Reminder: function approximation
• Structure/function class: MLP, CNN, Transformer, etc.
• Solve the Bellman's Equation with gradient descent!

• Q∗ &, 0 = 1 &, 0 + 3Z8∗[7∗ &G ∣ &, 0]
• 7∗ & = max

F
>∗(&, 0)

• Loss function:

18

Deep Q Network (DQN)

s ais V7
QA

sin sir Vols't

University of Washington

• Loss function:

• Estimated loss:

• Other tricks:
1. Double network trick for stronger stability;
2. Replay buffer for higher sample efficiency.

19

Deep Q Network (DQN)

University of Washington

• Evaluate network: trained network Q
• Updated in each iteration
• The first Q is the evaluate network

• Target network: temporal copy of evaluate network Q′
• Updated at regular intervals
• The second Q is fixed to be target network

• Avoid overfitting problem;
• Don’t need to solve a max problem in each iteration;
• Stabilize the training process.

20

DQN: double network structure

University of Washington

• Problem: batch size is very small compared with the dataset
• Each batch may only contain the transitions from a single trajectory
• Not mutually independent!

• Notice that we only need transitions {&e, 0e, 1e, &e′} ,instead of complete
trajectories.
• Solution: In each iteration, we randomly sample data from the replay

buffer to form the training batch.
• The replay buffer can be the offline dataset, or the data collected with

latest policy, which gives better sample efficiency.
21

DQN: experience replay

University of Washington

• Sometimes we don't want to estimate the Value function!
• Value function approximation can be extremely tricky;

• Empirical experiments tell us simpler algorithm leads to better performance;
• We need to solve an argmax/max problem for each update, which can be very

expensive.

• Policy-Gradient(PG) directly optimize the policy!
• Directly approximate $∗(⋅) with DNN.
• Now we use $N to denote the policy learnt.

22

Policy-Gradient HIS a

University of Washington

• Denote the probability of getting a certain trajectory g as , g, Q ,
and the corresponding reward as h(g).

, g, Q = ∏Y $N 0Y &Y
h g = ∑Y 3Y1Y

• Target: maximize j Q = Z8k ∑Y 3Y1Y = ∑Y , g, Q h(g)
• Gradient ascent: Q ← Q + l∇Nj(Q)

• Great so far!

• The problem lies in the estimation of ∇Nj(Q).

23

Policy-Gradient

University of Washington

• Target: maximize j Q = Z8k ∑Y 3Y1Y = ∑Y , g, Q h(g)
• Gradient ascent: Q ← Q + l∇Nj(Q)
• Directly calculation of the gradient of empirical reward gives:

j Q ≈ *
` ∑ed*

` h ge ,

∇Nj Q ≈ ∇N[*` ∑ed*
` h ge]?

• Remember	that	h g doesn’t	depend	on	Q directly:
• , g, Q = ∏Y $N 0Y &Y
• h g = ∑Y 3Y1Y

24

Policy-Gradient

University of Washington

• Target: maximize j Q = Z8k ∑Y 3Y1Y = ∑} , g, Q h(g)
• Directly calculation of the gradient of empirical reward gives:

j Q ≈ 1
~\

ed*

`
h ge ,

∇Nj Q ≈ ∇N[
1
~\

ed*

`
h ge]

• Problem: We are not calculating the exact reward with probability,
but with sampling!
• Therefore, we cannot backpropagate the gradient to DNN;
• (Sad news, can’t leave differential to loss.backword() this time)

25

Policy-Gradient

University of Washington

• Target: maximize j Q = Z8k ∑Y 3Y1Y = ∑Y , g, Q h(g)

• Good! The gradient can be also understood as an expectation!
• Therefore, the empirical update function is:

26

Policy-Gradient Theorem

University of Washington

• Language modeling: autoregressive conditional sequence modeling
• Predict next token (≈word) with some probability

,(“you”| “How”, “ ”, “are”, “ ”)
• Autoregressive: sample, and predict next

,(“? ”| “How”, “ ”, “are”, “ ”, “you”)
• Just like policy in RL!

$(0'|&*, 0*, 1*, … , &')

27

Decision Transformers

Decision making Architecture in
language modeling

University of Washington

• Offline dataset:
• Consider deterministic reward, finite horizon �, and discount � = �

� = ge = (&9e , 09e , 19e; &*e , 0*e , 1*e;⋯ ; &åe , 0åe , 1åe) ed*
`

• Decision Transformers:
• Return-to-go: çh' = ∑Yd'å 1Y

� = ge = (çh9e , &9e , 09e ; çh*e , &*e , 0*e ;⋯ ; çhåe , &åe , 0åe) ed*
`

28

Decision Transformers for Offline RL[!]

https://arxiv.org/abs/2106.01345

University of Washington

• Decision Transformers:
• Return-to-go (RTG): çh' = ∑Yd'å 1Y

� = ge = (çh9e , &9e , 09e ; çh*e , &*e , 0*e ;⋯ ; çhåe , &åe , 0åe) ed*
`

29

Decision Transformers for Offline RL

University of Washington

• Decision Transformers:
• Return-to-go (RTG): çh' = ∑Yd'å 1Y

� = ge = (çh9e , &9e , 09e ; çh*e , &*e , 0*e ;⋯ ; çhåe , &åe , 0åe) ed*
`

30

Decision Transformers for Offline RL

University of Washington

• Minibatch of sequence with length �
• Context length �: use previous � steps to predict next action
• Slice ge into g[èêë{íìî)*,*}:í]e for � = 1,2, … ,�

g[ò:ô]e = çhòe, &òe, 0òe; … ; çhôe , &ôe , 0ôe
ǧ[ò:ô]e = çhòe, &òe, 0òe; … ; çhôe , &ôe

31

Training

University of Washington

• Loss function
• Cross-entropy loss for discrete action space

ℒúùûü†ü°¢ =\
ed*

`
\
íd*

å
− log $ 0íe ǧ[èêë íìî)*,* :í]

e)

• £¤ loss for continuous action space

ℒúùûü†ü°¢ =\
ed*

`
\
íd*

å
:F~8 ⋅ •} ¶ß® ©™´¨, :©c) 0íe − 0

V

32

Training

University of Washington

• Set an initial RTG (large enough)
• Run the DT and subtract the current return-to-go with the observed

reward
• Crop the sequence to length �

33

Evaluation

University of Washington

• Possible to outperform the best trajectory in dataset

34

Results

University of Washington

• CQL: conservative Q-learning
• BEAR: off-policy Q-learning
• BRAC-v: behavior regularized offline RL

35

Results

• AWR: advantage-weighted regression
• BC: behavior cloning

University of Washington

• Use a pretrained language model (GPT2) as initialization

36

Pretraining DTs on Language Tasks[!]

https://arxiv.org/abs/2310.20587

University of Washington

• Language prediction as an auxiliary objective
• WikiText dataset
• ℒÆê¢Ø°êØù = ∑e − log ±(²e)*|²*,… ,²e)

ℒ = ℒúùûü†ü°¢ + ³ℒÆê¢Ø°êØù

37

Pretraining DTs on Language Tasks

