
Deep Reinforcement Learning

University of Washington

• Data: (x, y)
• Goal: Learn a

function f(x)=y
• Examples:

Classification,
Regression, …

2

Supervised Learning

University of Washington

• Data: x
• Goal: Learn underlying

structure of the data
• Examples:

Representation Learning,
Contrastive Learning,
Autoregressive
Pretraining

3

Self-supervised Learning

University of Washington

• Goal: Learn a
policy to maximize
reward
• Examples: Chess,

Go, Poker, Self-
driving

4

Reinforcement Learning

University of Washington

• Goal: Collect as much reward as possible.

5

Markov Decision Process

Agent

Environment

ActionState
Reward

University of Washington 6

Markov Decision Process

Agent

Environment

Action a" =
𝜋(𝑠')

State:
𝑠')*~𝑃(⋅∣ 𝑠', 𝑎')

Reward:
𝑟')* = 𝑟(𝑠', 𝑎')

Maximize total discounted reward ∑𝛾'𝑟'.

University of Washington

• Policy: 𝜋 𝑠 = 𝑎.
• Discount factor: 𝛾 ∈ (0,1).
• Value function: 𝑉8 𝑠9 = 𝔼8[∑' 𝛾'𝑟'], where 𝑠9, 𝑎9, 𝑟9, 𝑠*, 𝑎*, 𝑟*, … is

a trajectory sampled by using policy 𝜋.
• Q function: 𝑄8 𝑠9, 𝑎9 = 𝔼8[∑' 𝛾'𝑟(𝑠', 𝑎')].
• Optimal policy: 𝜋∗ = argmax8 V8(s).
• There exists an optimal policy that achieves the argmax for all 𝑠

simultaneously!

7

Markov Decision Process

University of Washington

• Optimal Q function: 𝑄8∗ 𝑠9, 𝑎9 = 𝔼8∗[∑' 𝛾'𝑟(𝑠', 𝑎')].

• Property: 𝜋∗ 𝑠 = argmaxF𝑄8
∗(𝑠, 𝑎).

• If we know 𝑄∗, we know 𝜋∗.

8

Optimal Q Function

University of Washington

• If we know 𝑟(𝑠, 𝑎) and 𝑃(𝑠G ∣ 𝑠, 𝑎), we can use dynamic programming
to solve the optimal policy.
• How to learn the optimal policy without the knowledge of 𝑟(𝑠, 𝑎) and
𝑃(𝑠G ∣ 𝑠, 𝑎)?

• Collect samples!

9

Reinforcement Learning

University of Washington

• 3361 possible board configurations in Go.
• Impossible to enumerate.

• Theorem: Ω(𝑆𝐴) samples are necessary for learning MDP without
structures, where S is # of states and A is # of actions.

10

Challenge: Large State Space

University of Washington

• Challenge in RL: large state and action space.
• Many states and actions are similar and have similar 𝑄8∗.
• Use a function class ℱ = {𝑓N} to approximate Q function.

• Suppose we have a dataset 𝒟 = {𝑄8∗ 𝑠, 𝑎 }, then we can fit a 𝑓N to
approximate 𝑄8∗:

𝜃∗ = argminN ∑ T,F ∈𝒟 𝑓N 𝑠, 𝑎 − 𝑄8∗ 𝑠, 𝑎
V

.

11

Function Approximation

University of Washington

• Dataset: trajectories 𝑠9, 𝑎9, 𝑟9, 𝑠*, 𝑎*, 𝑟*, … , 𝑠W sampled from some
behavior policy 𝜋X.

• Challenge: unknown 𝑄8∗(𝑠, 𝑎).

12

Offline Reinforcement Learning

University of Washington

• Reminder: Markov-Decision Process(MDP)

13

Q-learning

State:
𝑠Y)* = 𝑃(⋅∣ 𝑠Y, 𝑎Y)

Reward:
𝑟Y)* = 𝑟(𝑠Y, 𝑎Y)

University of Washington

• Value-based method:
• Evaluate all the states, then find the action leading to the best state.

• Reminder: Value function and Q function:

•𝑉8 𝑠 = 𝐸8[∑Y 𝛾Y𝑟Y ∣ 𝑠]

• We need to know which action leads to the given reward:

•Q8 𝑠, 𝑎 = 𝐸8[∑Y 𝛾Y𝑟Y ∣ 𝑠, 𝑎]

14

Q-learning

University of Washington

Q-function:

Q8 𝑠, 𝑎 = 𝐸8[\
Y

𝛾Y𝑟Y ∣ 𝑠, 𝑎]

• Target: derive the Q function for the optimal policy 𝜋∗, 𝑄∗

• How to solve this system?

• Of course, we can use Monte Carlo’s Method to estimate Q function.
• But it takes Ω(𝑆𝐴Y) sample trajectories.

• Can we do better?

15

Q-learning

University of Washington

Q-function:

Q8 𝑠, 𝑎 = 𝐸8[\
Y

𝛾Y𝑟Y ∣ 𝑠, 𝑎]

• Notice that Q function should satisfy the successor relationship;
• Bellman's Equation:

• Q∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝐸8∗[𝑉∗ 𝑠G ∣ 𝑠, 𝑎]
• 𝑉∗ 𝑠 = max

F
𝑄∗(𝑠, 𝑎)

• Then we can solve it with polynomial samples!

16

Q-learning: Tabular learning

University of Washington

• First, initialize 𝑄 ⋅ = 0;
• Then we do iterative DP:
• Until convergency, do:
• For 𝑠, 𝑎 ∈ 𝑆×𝐴:
• Update Q: 𝑄 𝑠, 𝑎 ← *

`a,b
∑TcdT,FcdF 𝑟e + 𝛾𝑉 𝑠e)*

• For 𝑠 ∈ 𝑆:
• Update V: 𝑉 𝑠 ← max

F
𝑄(𝑠, 𝑎)

17

Q-learning: Tabular learning

University of Washington

• When we combine Deep Learning with Q-learning, we get DQN.
• Reminder: function approximation
• Structure/function class: MLP, CNN, Transformer, etc.
• Solve the Bellman's Equation with gradient descent!

• Q∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝐸8∗[𝑉∗ 𝑠G ∣ 𝑠, 𝑎]
• 𝑉∗ 𝑠 = max

F
𝑄∗(𝑠, 𝑎)

• Loss function:

18

Deep Q Network (DQN)

University of Washington

• Loss function:

• Estimated loss:

• Other tricks:
1. Double network trick for stronger stability;
2. Replay buffer for higher sample efficiency.

19

Deep Q Network (DQN)

University of Washington

• Evaluate network: trained network 𝜃
• Updated in each iteration
• The first Q is the evaluate network

• Target network: temporal copy of evaluate network 𝜃′
• Updated at regular intervals
• The second Q is fixed to be target network

• Avoid overfitting problem;
• Don’t need to solve a max problem in each iteration;
• Stabilize the training process.

20

DQN: double network structure

University of Washington

• Problem: batch size is very small compared with the dataset
• Each batch may only contain the transitions from a single trajectory
• Not mutually independent!

• Notice that we only need transitions {𝑠e, 𝑎e, 𝑟e, 𝑠e′} ,instead of complete
trajectories.
• Solution: In each iteration, we randomly sample data from the replay

buffer to form the training batch.
• The replay buffer can be the offline dataset, or the data collected with

latest policy, which gives better sample efficiency.
21

DQN: experience replay

University of Washington

• Sometimes we don't want to estimate the Value function!
• Value function approximation can be extremely tricky;

• Empirical experiments tell us simpler algorithm leads to better performance;
• We need to solve an argmax/max problem for each update, which can be very

expensive.

• Policy-Gradient(PG) directly optimize the policy!
• Directly approximate 𝜋∗(⋅) with DNN.
• Now we use 𝜋N to denote the policy learnt.

22

Policy-Gradient

University of Washington

• Denote the probability of getting a certain trajectory 𝜏 as 𝑃 𝜏, 𝜃 ,
and the corresponding reward as 𝑅(𝜏).

𝑃 𝜏, 𝜃 = ∏Y 𝜋N 𝑎Y 𝑠Y
𝑅 𝜏 = ∑Y 𝛾Y𝑟Y

• Target: maximize 𝐽 𝜃 = 𝐸8k ∑Y 𝛾
Y𝑟Y = ∑Y 𝑃 𝜏, 𝜃 𝑅(𝜏)

• Gradient ascent: 𝜃 ← 𝜃 + 𝜂∇N𝐽(𝜃)

• Great so far!

• The problem lies in the estimation of ∇N𝐽(𝜃).

23

Policy-Gradient

University of Washington

• Target: maximize 𝐽 𝜃 = 𝐸8k ∑Y 𝛾
Y𝑟Y = ∑Y 𝑃 𝜏, 𝜃 𝑅(𝜏)

• Gradient ascent: 𝜃 ← 𝜃 + 𝜂∇N𝐽(𝜃)
• Directly calculation of the gradient of empirical reward gives:

𝐽 𝜃 ≈ *
`
∑ed*` 𝑅 𝜏e ,

∇N𝐽 𝜃 ≈ ∇N[
*
`
∑ed*` 𝑅 𝜏e]?

• Remember	that	𝑅 𝜏 doesn’t	depend	on	𝜃 directly:
• 𝑃 𝜏, 𝜃 = ∏Y 𝜋N 𝑎Y 𝑠Y
• 𝑅 𝜏 = ∑Y 𝛾Y𝑟Y

24

Policy-Gradient

University of Washington

• Target: maximize 𝐽 𝜃 = 𝐸8k ∑Y 𝛾
Y𝑟Y = ∑} 𝑃 𝜏, 𝜃 𝑅(𝜏)

• Directly calculation of the gradient of empirical reward gives:

𝐽 𝜃 ≈
1
𝑁
\
ed*

`

𝑅 𝜏e ,

∇N𝐽 𝜃 ≈ ∇N[
1
𝑁
\
ed*

`

𝑅 𝜏e]

• Problem: We are not calculating the exact reward with probability,
but with sampling!
• Therefore, we cannot backpropagate the gradient to DNN;
• (Sad news, can’t leave differential to loss.backword() this time)

25

Policy-Gradient

University of Washington

• Target: maximize 𝐽 𝜃 = 𝐸8k ∑Y 𝛾
Y𝑟Y = ∑Y 𝑃 𝜏, 𝜃 𝑅(𝜏)

• Good! The gradient can be also understood as an expectation!
• Therefore, the empirical update function is:

26

Policy-Gradient

University of Washington

• Language modeling: autoregressive conditional sequence modeling
• Predict next token (≈word) with some probability

𝑃(“you”| “How”, “ ”, “are”, “ ”)
• Autoregressive: sample, and predict next

𝑃(“? ”| “How”, “ ”, “are”, “ ”, “you”)
• Just like policy in RL!

𝜋(𝑎'|𝑠*, 𝑎*, 𝑟*, … , 𝑠')

27

Decision Transformers

Decision making Architecture in
language modeling

University of Washington

• Offline dataset:
• Consider deterministic reward, finite horizon 𝑯, and discount 𝜸 = 𝟏

𝐷 = 𝜏e = (𝑠9e , 𝑎9e , 𝑟9e; 𝑠*e , 𝑎*e , 𝑟*e;⋯ ; 𝑠�e , 𝑎�e , 𝑟�e) ed*
`

• Decision Transformers:
• Return-to-go: �𝑅' = ∑Yd'� 𝑟Y

𝐷 = 𝜏e = (�𝑅9e , 𝑠9e , 𝑎9e ; �𝑅*e , 𝑠*e , 𝑎*e ;⋯ ; �𝑅�e , 𝑠�e , 𝑎�e) ed*
`

28

Decision Transformers for Offline RL[🔗]

https://arxiv.org/abs/2106.01345

University of Washington

• Decision Transformers:
• Return-to-go (RTG): �𝑅' = ∑Yd'� 𝑟Y

𝐷 = 𝜏e = (�𝑅9e , 𝑠9e , 𝑎9e ; �𝑅*e , 𝑠*e , 𝑎*e ;⋯ ; �𝑅�e , 𝑠�e , 𝑎�e) ed*
`

29

Decision Transformers for Offline RL

University of Washington

• Decision Transformers:
• Return-to-go (RTG): �𝑅' = ∑Yd'� 𝑟Y

𝐷 = 𝜏e = (�𝑅9e , 𝑠9e , 𝑎9e ; �𝑅*e , 𝑠*e , 𝑎*e ;⋯ ; �𝑅�e , 𝑠�e , 𝑎�e) ed*
`

30

Decision Transformers for Offline RL

University of Washington

• Minibatch of sequence with length 𝐾
• Context length 𝐾: use previous 𝐾 steps to predict next action
• Slice 𝜏e into 𝜏[���{���)*,*}:�]

e for 𝑗 = 1,2, … ,𝐻
𝜏[�:�]
e = �𝑅�e, 𝑠�e, 𝑎�e; … ; �𝑅�e , 𝑠�e , 𝑎�e

�̌�[�:�]
e = �𝑅�e, 𝑠�e, 𝑎�e; … ; �𝑅�e , 𝑠�e

31

Training

University of Washington

• Loss function
• Cross-entropy loss for discrete action space

ℒ���� �¡¢ =\
ed*

`

\
�d*

�

− log 𝜋 𝑎�e �̌�[��� ���)*,* :�]
e)

• 𝑳𝟐 loss for continuous action space

ℒ���� �¡¢ =\
ed*

`

\
�d*

�

𝔼F~8 ⋅ ¥} ¦§¨ ©ª«¬, :©
c) 𝑎�

e − 𝑎
V

32

Training

University of Washington

• Set an initial RTG (large enough)
• Run the DT and subtract the current return-to-go with the observed

reward
• Crop the sequence to length 𝐾

33

Evaluation

University of Washington

• Possible to outperform the best trajectory in dataset

34

Results

University of Washington

• CQL: conservative Q-learning
• BEAR: off-policy Q-learning
• BRAC-v: behavior regularized offline RL

35

Results

• AWR: advantage-weighted regression
• BC: behavior cloning

University of Washington

• Use a pretrained language model (GPT2) as initialization

36

Pretraining DTs on Language Tasks[🔗]

https://arxiv.org/abs/2310.20587

University of Washington

• Language prediction as an auxiliary objective
• WikiText dataset
• ℒ®�¢¯°�¯� = ∑e − log 𝑇(𝑤e)*|𝑤*,… ,𝑤e)

ℒ = ℒ���� �¡¢ + 𝜆ℒ®�¢¯°�¯�

37

Pretraining DTs on Language Tasks

