Deep Reinforcement Learning

Supervised Learning

- Data: (x, y)
- Goal: Learn a function f(x)=y
- Examples: Classification, Regression, ...

Single-label classification

Self-supervised Learning

- Data: x
- Goal: Learn underlying structure of the data
- Examples: Representation Learning, Contrastive Learning, Autoregressive Pretraining

Reinforcement Learning

- Goal: Learn a policy to maximize reward
- Examples: Chess, Go, Poker, Selfdriving

Markov Decision Process

• Goal: Collect as much reward as possible.

Markov Decision Process

Maximize total discounted reward $\sum \gamma^t r_t$.

Markov Decision Process

- Policy: $\pi(s) = a$.
- Discount factor: $\gamma \in (0,1)$.
- Value function: $V^{\pi}(s_0) = \mathbb{E}_{\pi}[\sum_t \gamma^t r_t]$, where $s_0, a_0, r_0, s_1, a_1, r_1, ...$ is a trajectory sampled by using policy π .
- Q function: $Q^{\pi}(s_0, a_0) = \mathbb{E}_{\pi}[\sum_t \gamma^t r(s_t, a_t)].$
- Optimal policy: $\pi^* = \operatorname{argmax}_{\pi} V^{\pi}(s)$.
- There exists an optimal policy that achieves the argmax for all *s* **simultaneously**!

Optimal Q Function

- Optimal Q function: $Q^{\pi^*}(s_0, a_0) = \mathbb{E}_{\pi^*}[\sum_t \gamma^t r(s_t, a_t)].$
- Property: $\pi^*(s) = \operatorname{argmax}_a Q^{\pi^*}(s, a)$.
- If we know Q^* , we know π^* .

Reinforcement Learning

- If we know r(s, a) and P(s' | s, a), we can use dynamic programming to solve the optimal policy.
- How to learn the optimal policy **without** the knowledge of r(s, a) and P(s' | s, a)?
- Collect samples!

Challenge: Large State Space

- 3³⁶¹ possible board configurations in Go.
- Impossible to enumerate.
- Theorem: Ω(SA) samples are necessary for learning MDP without structures, where S is # of states and A is # of actions.

Function Approximation

- Challenge in RL: large state and action space.
- Many states and actions are similar and have similar Q^{π^*} .
- Use a function class $\mathcal{F} = \{f_{\theta}\}$ to approximate Q function.
- Suppose we have a dataset $\mathcal{D} = \{Q^{\pi^*}(s, a)\}$, then we can fit a f_{θ} to approximate Q^{π^*} :

$$\theta^* = \operatorname{argmin}_{\theta} \sum_{(s,a)\in\mathcal{D}} \left(f_{\theta}(s,a) - Q^{\pi^*}(s,a) \right)^2.$$

Offline Reinforcement Learning

- Dataset: trajectories $s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_T$ sampled from some behavior policy π_b .
- Challenge: unknown $Q^{\pi^*}(s, a)$.

Q-learning

Reminder: Markov-Decision Process(MDP)

State: $s_{h+1} = P(\cdot | s_h, a_h)$ Reward: $r_{h+1} = r(s_h, a_h)$

Q-learning

- Value-based method:
 - Evaluate all the states, then find the action leading to the best state.
- Reminder: Value function and Q function:

•
$$V_{\pi}(s) = E_{\pi}[\sum_{h} \gamma^{h} r_{h} \mid s]$$

• We need to know which action leads to the given reward:

•
$$Q_{\pi}(s, a) = E_{\pi}[\sum_{h} \gamma^{h} r_{h} \mid s, a]$$

Q-learning

Q-function:

$$Q_{\pi}(s,a) = E_{\pi}\left[\sum_{h} \gamma^{h} r_{h} \mid s,a\right]$$

- Target: derive the Q function for the optimal policy π^* , Q^*
- How to solve this system?
- Of course, we can use Monte Carlo's Method to estimate Q function.
- But it takes $\Omega(SA^h)$ sample trajectories.
- Can we do better?

Q-learning: Tabular learning

Q-function:

$$Q_{\pi}(s,a) = E_{\pi}\left[\sum_{h} \gamma^{h} r_{h} \mid s,a\right]$$

- Notice that Q function should satisfy the successor relationship;
- Bellman's Equation:

•
$$Q^*(s, a) = r(s, a) + \gamma E_{\pi^*}[V^*(s') | s, a]$$

• $V^*(s) = \max_a Q^*(s, a)$

• Then we can solve it with polynomial samples!

Q-learning: Tabular learning

- First, initialize $Q(\cdot) = 0$;
- Then we do iterative DP:
 - Until convergency, do:
 - For $(s, a) \in S \times A$:

• Update Q:
$$Q(s, a) \leftarrow \frac{1}{N_{s,a}} \sum_{s_i=s, a_i=a} (r_i + \gamma V(s_{i+1}))$$

• For $s \in S$:

Here $N_{s,a}$ is the counter of (s,a) in dataset.

• Update V: $V(s) \leftarrow \max_{a} Q(s, a)$

Deep Q Network (DQN)

- When we combine Deep Learning with Q-learning, we get DQN.
- Reminder: function approximation
 - Structure/function class: MLP, CNN, Transformer, etc.
 - Solve the Bellman's Equation with gradient descent!

•
$$Q^*(s,a) = r(s,a) + \gamma E_{\pi^*}[V^*(s') | s,a]$$

•
$$V^*(s) = \max_a Q^*(s,a)$$

• Loss function:

$$L(\theta) = \mathbf{E}_{\theta} \left[(Q_{\theta}(s, a) - r(s, a) - \gamma \mathbf{E} [V_{\theta}(s') \mid s, a])^2 \right]$$

Deep Q Network (DQN)

• Loss function:

$$L(\theta) = \mathbf{E}_{\theta} \left[(Q_{\theta}(s, a) - r(s, a) - \gamma \mathbf{E} [V_{\theta}(s') \mid s, a])^2 \right]$$

• Estimated loss:

$$\mathscr{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left[Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{a'} Q_{\theta}(s'_i, a') \right]^2$$

- Other tricks:
 - 1. Double network trick for stronger stability;
 - 2. Replay buffer for higher sample efficiency.

DQN: double network structure

$$\mathscr{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left[Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{a'} Q_{\theta'}(s'_i, a') \right]^2$$

- Evaluate network: trained network θ
 - Updated in each iteration
 - The first Q is the evaluate network
- Target network: temporal copy of evaluate network heta'
 - Updated at regular intervals
 - The second Q is fixed to be target network
- Avoid overfitting problem;
- Don't need to solve a max problem in each iteration;
- Stabilize the training process.

DQN: experience replay

$$\mathscr{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left[Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{a'} Q_{\theta'}(s'_i, a') \right]^2$$

- Problem: batch size is very small compared with the dataset
 - Each batch may only contain the transitions from a single trajectory
 - Not mutually independent!
- Notice that we only need transitions $\{s_i, a_i, r_i, s_i'\}$, instead of complete trajectories.
- Solution: In each iteration, we randomly sample data from the replay buffer to form the training batch.
- The replay buffer can be the offline dataset, or the data collected with latest policy, which gives better sample efficiency.

- Sometimes we don't want to estimate the Value function!
 - Value function approximation can be extremely tricky;
 - Empirical experiments tell us simpler algorithm leads to better performance;
 - We need to solve an argmax/max problem for each update, which can be very expensive.

$$\pi(s) \leftarrow \arg\max_{a} \{ \mathbf{E}_{\pi}[\sum_{a} \gamma^{h} r_{h} \mid s, a] \}$$

- Policy-Gradient(PG) directly optimize the policy!
- Directly approximate $\pi^*(\cdot)$ with DNN.
 - Now we use π_{θ} to denote the policy learnt.

• Denote the probability of getting a certain trajectory τ as $P(\tau, \theta)$, and the corresponding reward as $R(\tau)$.

$$P(\tau,\theta) = \prod_{h} \pi_{\theta}(a_{h} | s_{h})$$
$$R(\tau) = \sum_{h} \gamma^{h} r_{h}$$

- Target: maximize $J(\theta) = E_{\pi_{\theta}}[\sum_{h} \gamma^{h} r_{h}] = \sum_{h} P(\tau, \theta) R(\tau)$
- Gradient ascent: $\theta \leftarrow \theta + \eta \nabla_{\theta} J(\theta)$
- Great so far!
- The problem lies in the estimation of $\nabla_{\theta} J(\theta)$.

- Target: maximize $J(\theta) = E_{\pi_{\theta}}[\sum_{h} \gamma^{h} r_{h}] = \sum_{h} P(\tau, \theta) R(\tau)$
- Gradient ascent: $\theta \leftarrow \theta + \eta \nabla_{\theta} J(\theta)$
- Directly calculation of the gradient of empirical reward gives:

$$J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} R(\tau_i),$$
$$\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \left[\frac{1}{N} \sum_{i=1}^{N} R(\tau_i)\right]?$$

- Remember that $R(\tau)$ doesn't depend on θ directly:
 - $P(\tau, \theta) = \prod_{h} \pi_{\theta}(a_{h} \mid s_{h})$
 - $R(\tau) = \sum_{h} \gamma^{h} r_{h}$

- Target: maximize $J(\theta) = E_{\pi_{\theta}}[\sum_{h} \gamma^{h} r_{h}] = \sum_{\tau} P(\tau, \theta) R(\tau)$
- Directly calculation of the gradient of empirical reward gives:

$$J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} R(\tau_i),$$

$$T_{\theta} J(\theta) \approx \nabla_{\theta} \left[\frac{1}{N} \sum_{i=1}^{N} R(\tau_i)\right]$$

- Problem: We are not calculating the exact reward with probability, but with sampling!
 - Therefore, we cannot backpropagate the gradient to DNN;
 - (Sad news, can't leave differential to loss.backword() this time)

• Target: maximize
$$J(\theta) = E_{\pi_{\theta}} [\sum_{h} \gamma^{h} r_{h}] = \sum_{h} P(\tau, \theta) R(\tau)$$

$$\nabla_{\theta} J(\theta) = \sum_{\tau} \nabla_{\theta} P(\tau, \theta) R(\tau)$$

$$= \sum_{\tau} \frac{P(\tau, \theta)}{P(\tau, \theta)} \nabla_{\theta} P(\tau, \theta) R(\tau)$$

$$= \sum_{\tau} P(\tau, \theta) \frac{\nabla_{\theta} P(\tau, \theta)}{P(\tau, \theta)} R(\tau)$$

$$= \sum_{\tau} P(\tau, \theta) \nabla_{\theta} \log P(\tau, \theta) R(\tau)$$

$$= \mathbf{E}_{\pi_{\theta}} [R(\tau) \nabla_{\theta} \log P(\tau, \theta)]$$

- Good! The gradient can be also understood as an expectation!
- Therefore, the empirical update function is:

$$\theta \leftarrow \theta + \frac{\eta}{N} \sum_{i=1}^{N} R(\tau_i) \nabla_{\theta} \log P(\tau_i, \theta)$$

- Language modeling: autoregressive conditional sequence modeling
 - Predict next token (≈word) with some probability
 P("you"|["How", "", "are", ""])
 - Autoregressive: sample, and predict next P("?"|["How", "", "are", "", "you"])
- Just like **policy** in RL!

$$\pi(a_t|s_1, a_1, r_1, \dots, s_t)$$

Decision Transformers for Offline RL

- Offline dataset:
 - Consider deterministic reward, finite horizon *H*, and discount $\gamma = 1$ $D = \left\{ \tau^{i} = (s_{0}^{i}, a_{0}^{i}, r_{0}^{i}; s_{1}^{i}, a_{1}^{i}, r_{1}^{i}; \dots; s_{H}^{i}, a_{H}^{i}, r_{H}^{i}) \right\}_{i=1}^{N}$
- Decision Transformers:

• Return-to-go:
$$\hat{R}_t = \sum_{h=t}^{H} r_h$$

 $D = \left\{ \tau^i = (\hat{R}_0^i, s_0^i, a_0^i; \hat{R}_1^i, s_1^i, a_1^i; \cdots; \hat{R}_H^i, s_H^i, a_H^i) \right\}_{i=1}^{N}$

Decision Transformers for Offline RL

- Decision Transformers:
 - Return-to-go (RTG): $\hat{R}_t = \sum_{h=t}^H r_h$ $D = \left\{ \tau^i = (\hat{R}_0^i, s_0^i, a_0^i; \hat{R}_1^i, s_1^i, a_1^i; \dots; \hat{R}_H^i, s_H^i, a_H^i) \right\}_{i=1}^N$

Decision Transformers for Offline RL

• Decision Transformers:

• Return-to-go (RTG): $\hat{R}_t = \sum_{h=t}^{H} r_h$ $D = \left\{ \tau^i = (\hat{R}_0^i, s_0^i, a_0^i; \hat{R}_1^i, s_1^i, a_1^i; \cdots; \hat{R}_H^i, s_H^i, a_H^i) \right\}_{i=1}^{N}$

```
# main model
def DecisionTransformer(R, s, a, t):
    # compute embeddings for tokens
    pos_embedding = embed_t(t)    # per-timestep (note: not per-token)
    s_embedding = embed_s(s) + pos_embedding
    a_embedding = embed_a(a) + pos_embedding
    R_embedding = embed_R(R) + pos_embedding
    # interleave tokens as (R_1, s_1, a_1, ..., R_K, s_K)
    input_embeds = stack(R_embedding, s_embedding, a_embedding)
    # use transformer to get hidden states
    hidden_states = transformer(input_embeds=input_embeds)
    # select hidden states for action prediction tokens
    a_hidden = unstack(hidden_states).actions
    # predict action
```

```
return pred_a(a_hidden)
```

```
self.embed_timestep = nn.Embedding(max_ep_len, hidden_size)
self.embed_return = torch.nn.Linear(1, hidden_size)
self.embed_state = torch.nn.Linear(self.state_dim, hidden_size)
self.embed_action = torch.nn.Linear(self.act_dim, hidden_size)
```

Training

- Minibatch of sequence with length K
 - Context length *K*: use previous *K* steps to predict next action

• Slice
$$\tau^{i}$$
 into $\tau^{i}_{[\max\{j-K+1,1\}:j]}$ for $j = 1, 2, ..., H$
 $\tau^{i}_{[l:r]} = \left(\hat{R}^{i}_{l}, s^{i}_{l}, a^{i}_{l}; ...; \hat{R}^{i}_{r}, s^{i}_{r}, a^{i}_{r}\right)$
 $\check{\tau}^{i}_{[l:r]} = \left(\hat{R}^{i}_{l}, s^{i}_{l}, a^{i}_{l}; ...; \hat{R}^{i}_{r}, s^{i}_{r}\right)$

Training

- Loss function
 - **Cross-entropy loss** for discrete action space

$$\mathcal{L}_{\text{decision}} = \sum_{i=1}^{N} \sum_{j=1}^{N} -\log \pi \left(a_{j}^{i} \big| \check{\tau}_{[\max\{j-K+1,1\}:j]}^{i} \right)$$

• L2 loss for continuous action space

$$\mathcal{L}_{\text{decision}} = \sum_{i=1}^{N} \sum_{j=1}^{H} \mathbb{E}_{a \sim \pi(\cdot |\check{\tau}^{i}_{[\max\{j-K+1,1\}:j]})} (a_{j}^{i} - a)^{2}$$

```
# training loop
for (R, s, a, t) in dataloader: # dims: (batch_size, K, dim)
            a_preds = DecisionTransformer(R, s, a, t)
            loss = mean((a_preds - a)**2) # L2 loss for continuous actions
            optimizer.zero_grad(); loss.backward(); optimizer.step()
```

Evaluation

- Set an initial RTG (large enough)
- Run the DT and subtract the current return-to-go with the observed reward
- Crop the sequence to length *K*

```
# evaluation loop
target_return = 1  # for instance, expert-level return
R, s, a, t, done = [target_return], [env.reset()], [], [1], False
while not done: # autoregressive generation/sampling
    # sample next action
    action = DecisionTransformer(R, s, a, t)[-1]  # for cts actions
    new_s, r, done, _ = env.step(action)
    # append new tokens to sequence
    R = R + [R[-1] - r]  # decrement returns-to-go with reward
    s, a, t = s + [new_s], a + [action], t + [len(R)]
    R, s, a, t = R[-K:], ... # only keep context length of K
```

Results

• **Possible** to outperform the best trajectory in dataset

Results

Dataset	Environment	DT (Ours)	CQL	BEAR	BRAC-v	AWR	BC
Medium-Expert	HalfCheetah	86.8 ± 1.3	62.4	53.4	41.9	52.7	59.9
Medium-Expert	Hopper	107.6 ± 1.8	111.0	96.3	0.8	27.1	79.6
Medium-Expert	Walker	108.1 ± 0.2	98.7	40.1	81.6	53.8	36.6
Medium-Expert	Reacher	89.1 ± 1.3	30.6	-	-	-	73.3
Medium	HalfCheetah	42.6 ± 0.1	44.4	41.7	46.3	37.4	43.1
Medium	Hopper	67.6 ± 1.0	58.0	52.1	31.1	35.9	63.9
Medium	Walker	74.0 ± 1.4	79.2	59.1	81.1	17.4	77.3
Medium	Reacher	51.2 ± 3.4	26.0	-	-	-	48.9
Medium-Replay	HalfCheetah	36.6 ± 0.8	46.2	38.6	47.7	40.3	4.3
Medium-Replay	Hopper	82.7 ± 7.0	48.6	33.7	0.6	28.4	27.6
Medium-Replay	Walker	66.6 ± 3.0	26.7	19.2	0.9	15.5	36.9
Medium-Replay	Reacher	18.0 ± 2.4	19.0	-	-	-	5.4
Average (Without Reacher) Average (All Settings)		74.7	63.9	48.2	36.9	34.3	46.4
		69.2	54.2	-	-	-	47.7

- CQL: conservative Q-learning
- BEAR: off-policy Q-learning
- BRAC-v: behavior regularized offline RL
- AWR: advantage-weighted regression
- BC: behavior cloning

Pretraining DTs on Language Tasks

• Use a pretrained language model (GPT2) as initialization

Pretraining DTs on Language Tasks

- Language prediction as an auxiliary objective
 - WikiText dataset

• $\mathcal{L}_{\text{language}} = \sum_{i} -\log T(w_{i+1}|w_1, \dots, w_i)$ $\mathcal{L} = \mathcal{L}_{\text{decision}} + \lambda \mathcal{L}_{\text{language}}$

