“Deep Reinforcement Learning

Supervised Learning

O Single-label classification 0 Multi-label classification

e Data: (x, y)

 Goal: Learn a
function f(x)=y

* Examples:
Classification,
Regression, ...

Dog Cat, Dog, Rabbit

University of Washington

Self-supervised Learning

 Data: x

* Goal: Learn underlying
structure of the data

e Examples:
Representation Learning,
Contrastive Learning,
Autoregressive
Pretraining

University of Washington

INPUT

Bottleneck

N\

Y

)
/

Compres

data

sed

i

/

OUTPUT :
Reconstructed
input

Reinforcement Learning

0:00:3 Google DeepMind
3 Challenge Match

f_a\-.ﬁ.mzow
* Goal: Learn a |
policy to maximize

reward

* Examples: Chess,
Go, Poker, Self-
driving

$0° AlphaGo Lee Sedol
D L Z
IS

University of Washington

Markov Decision Process

Age nt

State
Reward

Action

Environment

e Goal: Collect as much reward as possible.

University of Washington

Markov Decision Process

Age nt

State: Action a; =

St+1~P (| ¢, ar) T[(St)
Reward: Environment
Tt+1 = T(StJ at)

Maximize total discounted reward Y. yr,.

University of Washington 6

Markov Decision Process

* Policy: m(s) = a.
* Discount factor: y € (0,1).

* Value function: V™ (sy) = E [, y1¢], where sy, ag, 7o, S, A1, Ty, .. iS
a trajectory sampled by using policy .

» Q function: Q" (so, ao) = Ex[X: v (st ap)]-
* Optimal policy: ™ = argmax, V" (s).

* There exists an optimal policy that achieves the argmax for all s
simultaneously!

Optimal Q Function

» Optimal Q function: Q™ (sy, ay) = E «[Y vir(s,, a.)].
* Property: m*(s) = argmax, Q™ (s,a).

* If we know QF, we know 1~.

Reinforcement Learning

* If we know r(s,a) and P(s’ | s,a), we can use dynamic programming
to solve the optimal policy.

* How to learn the optimal policy without the knowledge of (s, a) and
P(s'|s,a)?

* Collect samples!

Challenge: Large State Space

» 3361 possible board configurations in Go.
* Impossible to enumerate.

* Theorem: (L(SA) samples are necessary for learning MDP without
structures, where S is # of states and A is # of actions.

Function Approximation

* Challenge in RL: large state and action space.
* Many states and actions are similar and have similar Q’T*.

* Use a function class F = {fg} to approximate Q function.

* Suppose we have a dataset D = {Q”* (s,a)}, then we can fita fy to
approximate Q™ :

. 2
0" = argming X5 1)ep (fe (s,a) — Q" (s, Cl)) :

Offline Reinforcement Learning

* Dataset: trajectories sq, ag, 7y, S1, A1, 14, .., ST Sampled from some
behavior policy ;.

» Challenge: unknown QT (s, a).

Q-learning

* Reminder: Markov-Decision Process(MDP) +5

State:

Sh+1 = P(l sp,ay)
Reward:

Th+1 = T(Sp, ap)

Q-learning

* Value-based method:
e Evaluate all the states, then find the action leading to the best state.

e Reminder: Value function and Q function:

'Vn(s) — En[Zh Vhrh | s]

* We need to know which action leads to the given reward:

*Qr(s,a) = E [2n Vhrh | s,a]

Q-learning

Q-function:

Qn(s,@) = Ex[) ¥"1y | 5,0]
h

 Target: derive the Q function for the optimal policy =™, Q"
* How to solve this system?

e Of course, we can use Monte Carlo’s Method to estimate Q function.

* But it takes Q(SA") sample trajectories.

e Can we do better?

Q-learning: Tabular learning

Q-function:

Qn(s,@) = Ex[) ¥"1y | 5,0]
h

* Notice that Q function should satisfy the successor relationship;

* Bellman's Equation:
*Q'(s,a) =7r(s,a) +YE[V'(s') | s,qa]
* V*(s) = max Q*(s, a)
a

* Then we can solve it with polynomial samples!

Q-learning: Tabular learning

* First, initialize Q(-) = 0;
e Then we do iterative DP:

e Until convergency, do:
* For (s,a) € SXA:

1
* Update Q: Q(s, @) « 3= Zs;=s.0;=a(ri + ¥V (5141))
e For S € S: Here N, , is the counter of (s,a) in dataset.

* Update V: V(s) « max Q(s,a)
a

Deep Q Network (DQN)

* When we combine Deep Learning with Q-learning, we get DQN.

* Reminder: function approximation
* Structure/function class: MLP, CNN, Transformer, etc.
* Solve the Bellman's Equation with gradient descent!

* Q*(s,a) =r(s,a) + yE «[V*(s") | s,a]
« V*(s) = max Q*(s,a)

e Loss function:

L(6) = Eo[(Qy(s, @) — r(s,a) — YE[Vy(s) | 5, al)’]

Deep Q Network (DQN)

e Loss function:

L(9) = Ey|(Qy(s, a) — r(s,a) — yE[V,(s) | 5,al)?|
e Estimated loss:

1 N
ZO) = 2, 1045, @) = 1; = y max Oyfs}, a)I’
i=1 ¢

e Other tricks:

1. Double network trick for stronger stability;
2. Replay buffer for higher sample efficiency.

DQN: double network structure

1 N
O =~ Z, Qs @) = 1 = y max Qy(s;, @)

e Evaluate network: trained network 6
* Updated in each iteration
 The first Q is the evaluate network

* Target network: temporal copy of evaluate network 6’
* Updated at regular intervals
* The second Qis fixed to be target network

* Avoid overfitting problem;
* Don’t need to solve a max problem in each iteration;
* Stabilize the training process.

DQN: experience replay

1 N
O =~ Z, Qs @) = 1 = y max Qy(s;, @)

* Problem: batch size is very small compared with the dataset
e Each batch may only contain the transitions from a single trajectory
* Not mutually independent!

* Notice that we only need transitions {s;, a;, 13, s;'} ,instead of complete
trajectories.

* Solution: In each iteration, we randomly sample data from the replay
buffer to form the training batch.

* The replay buffer can be the offline dataset, or the data collected with
latest policy, which gives better sample efficiency.

Policy-Gradient

e Sometimes we don't want to estimate the Value function!

* Value function approximation can be extremely tricky;
* Empirical experiments tell us simpler algorithm leads to better performance;

* We need to solve an argmax/max problem for each update, which can be very
expensive.

n(s) <« argmax{E_[Z yhrh | s,al}

a

* Policy-Gradient(PG) directly optimize the policy!

* Directly approximate w*(-) with DNN.
* Now we use 1y to denote the policy learnt.

Policy-Gradient

* Denote the probability of getting a certain trajectory 7 as P(t,0),
and the corresponding reward as R(7).

P(t,0) =[lpme(an | sp)

R(D) = Tpy"n,
* Target: maximize J(6) = E |2, vy =X, P(t,0)R(7)
* Gradient ascent: 8 <« 8 +nVyJ(0)

 Great so far!

* The problem lies in the estimation of V4 /(8).

Policy-Gradient

* Target: maximize J(0) = E [X, v =X, P(1,0)R(7)
* Gradient ascent: 8 <« 8 +nVyJ(0)
* Directly calculation of the gradient of empirical reward gives:

J(6) ~ - R(ry),
Vol () ~ Vo[~ T, R(r)]?
* Remember that R(7) doesn’t depend on 6 directly:

* P(7,0) =[lpmg(ap | sp)
* R(7) = Xy Vhrh

Policy-Gradient

* Target: maximize J(0) = E [X, v, =X, P(r,0)R(7)

* Directly calculation of the gradient of empirical reward gives:

N
1
J©) =) R(@),

i=11 N
Vo) (0) ~ Vgl > R(z))

* Problem: We are not calculating the exact reward with probability,
but with sampling!
* Therefore, we cannot backpropagate the gradient to DNN;
* (Sad news, can’t leave differential to loss.backword() this time)

Policy-Gradient

* Target: maximize J(0) = E [X, vy =X, P(1,0)R(7)

= pr(r, 9)R(T)

= Z vgp (1,0)R(T)
P(t,0)

= ZP =) R(7)

- ZP (1,0)Vglog P(r,0)R(T)

= E,, [R(T)Vglog P(r,0)]
* Good! The gradient can be also understood as an expectation!
* Therefore, the empirical uodate function is:

00+ — ZR(r)VglogP(0)
ll

University of Washington

26

Decision Transformers
Architecture in

language modeling

* Language modeling: autoregressive conditional sequence modeling

* Predict next token (=word) with some probability
P(l(you))l [“HOW"’ (o "’ llare"’ (o "])

* Autoregressive: sample, and predict next
P(ll? "l [“HOW"’ (o ", llare"’ o "’ llyou"])

* Just like policy in RL!
(s]S, aq, 71, «v) S¢)

University of Washington

27

Decision Transformers for Offline RLLZ

* Offline dataset:
* Consider deterministic reward, finite horizon H, and discounty = 1

—_ I — l l . l l . . l l
D - {T - (SOI a(); ;Sl) al) ;.“;SH) aH))}i=1
* Decision Transformers:

* Return-to-go: R, = Yhi_. 1y,

: : : : : . <N
— I — l L. . . L l
D - {T -)S(); a()) ;Sl) al;'”;)SH; aH)}i=1

https://arxiv.org/abs/2106.01345

Decision Transformers for Offline RL

e Decision Transformers:
* Return-to-go (RTG): R, = Y1i_, 1y,

. A" . " a1 - ' 7]] N
_ I l l L. pl L L. - DL l !
D = {T — (RO; S, Ao Rlell A1y RH’ SHo aH)}i=1

% -%

causal transformer

o000

University of Washington

29

Decision Transformers for Offline RL

e Decision Transformers:
* Return-to-go (RTG): R, = Yii_, 1y,

» A" . L] ~ 7 - 1 7]] pv
_ I l l L. pl L L. - DL l !
D = {T — (RO; S, Ao Rl) S1, A1 RH’ SHo aH)}i=1

main model
def DecisionTransformer(R, s, a, t):
compute embeddings for tokens
pos_embedding = embed_t(t) # per-timestep (note: not per-token)
s_embedding embed_s(s) + pos_embedding
a_embedding embed_a(a) + pos_embedding
R_embedding embed_R(R) + pos_embedding

interleave tokens as (R_1, s_1, a1, ..., R_K, s_K)
input_embeds = stack(R_embedding, s_embedding, a_embedding)

use transformer to get hidden states
hidden_states = transformer(input_embeds=input_embeds) SElf-embEd_tlmestep = nn.EmbEddlng(max_ep_len, hldden_SlZE)

select hidden states for action prediction tokens Self'embed—return = torch.nn.Llnear(l, h1dden_51ze)
a_hidden = unstack(hidden_states).actions self.embed_state = torch.nn.Linear(self.state_dim, hidden_size)
predict action self.embed_action = torch.nn.Linear(self.act_dim, hidden_size)

return pred_a(a_hidden)

University of Washington 30

Training

* Minibatch of sequence with length K
e Context length K: use previous K steps to predict next action
* Slice 7! into T[imax{j—K+1,1}:j] forj=1,2,..,H
i I
T[] = (R}, s}, ap; ...; RL, sk, al)

v _ (Dl -l Al. .DI ol
T[l:r] - (Rl, Sl, al’ ren Rr, Sr)

Training

* Loss function
* Cross-entropy loss for dlscrete action space

Lgecision = Z z o logn(‘ T [max{j—K+1,1}:]])

i=1j=1
* L2 loss for contlnuous actlon space

: 2
l —
Lgecision = § E IEa,vn(¥ max{j—K+1,1}:j])(a] a)

=1 j=1

training loop

for (R, s, a, t) in dataloader: # dims: (batch_size, K, dim)
a_preds = DecisionTransformer(R, s, a, t)
loss = mean((a_preds - a)*xx*x2) # L2 loss for continuous actions
optimizer.zero_grad(); loss.backward(); optimizer.step()

University of Washington 32

Evaluation

* Set an initial RTG (large enough)

* Run the DT and subtract the current return-to-go with the observed
reward

* Crop the sequence to length K

evaluation 1loop

target_return = 1 # for instance, expert-level return
R, s, a, t, done = [target_return], [env.reset()], [], [1], False
while not done: # autoregressive generation/sampling
sample next action
action = DecisionTransformer (R, s, a, t)[-1] # for cts actions
new_s, r, done, _ = env.step(action)
append new tokens to sequence
R =R + [R[-1] - r] # decrement returns-to-go with reward
s, a, t = s + [new_s], a + [action], t + [len(R)]
R, s, a, t = R[-K:], ... # only keep context length of K

University of Washington

33

40

()
)
c
©
z
o 20
y—
—
)
a

o
\

0

Target Return (Normalized)

10

20

100

50

-~ 100

50

30 40 50 0 25 50

- [Decision Transformer

Results

75 100
Target Return (Normalized)

- (Qracle

Seaquest
B] ’/
5 I
I ,’/
1 }"’
axYLeEN 0 ,’I
0 1 2 3
Reacher
—
-
20 -
/”
10 P
P
0 -
0 25 50 75 100 0 5 10 15 20 25

Target Return (Normalized) Target Return (Normalized)

Best Trajectory in Dataset

* Possible to outperform the best trajectory in dataset

University of Washington

34

Results

Dataset Environment DT (Ours) CQL BEAR BRAC-v AWR BC
Medium-Expert = HalfCheetah 86.8+t1.3 62.4 53.4 41.9 52.7 59.9
Medium-Expert Hopper 1076 £1.8 111.0 96.3 0.8 27.1 79.6
Medium-Expert =~ Walker 108.1 0.2 98.7 40.1 81.6 53.8 36.6
Medium-Expert Reacher 89.1+1.3 30.6 - - - 733
Medium HalfCheetah 42.6 = 0.1 44.4 41.7 46.3 374 43.1
Medium Hopper 676 £1.0 98.0 52.1 31.1 35.9 639
Medium Walker 740+t 14 79.2 59.1 81.1 174 773
Medium Reacher 51.2+34 26.0 - - - 489
Medium-Replay = HalfCheetah 36.6 = 0.8 46.2 38.6 47.7 40.3 4.3
Medium-Replay = Hopper 82.7Lt7.0 48.6 33.7 0.6 28.4 27.6
Medium-Replay = Walker 66.6 £ 3.0 26.7 19.2 0.9 155 36.9
Medium-Replay Reacher 18.0+24 19.0 - - - 5.4

Average (Without Reacher) 74.7 63.9 48.2 36.9 34.3 464
Average (All Settings) 69.2 54.2 - - - 477

e CQL: conservative Q-learning
e BEAR: off-policy Q-learning
 BRAC-v: behavior regularized offline RL

 AWR: advantage-weighted regression

* BC: behavior cloning

Pretraining DTs on Language Tasks[<1

e Use a pretrained language model (GPT2) as initialization

large language model pre-train downstream offline RL
Actions speak louder with words <eos>
A A A A A A
N S S S S —
transformer 3%%‘ transformer + LoRA

‘ | | ‘ | ‘ | ‘ | ‘4; I 1 1 1 1 1 1 I
| i | " | . | - ‘d, |) | I |
<bos> Actions speak louder with words t-1 é)m é)m t @t @t

University of Washington

https://arxiv.org/abs/2310.20587

Pretraining DTs on Language Tasks

* Language prediction as an auxiliary objective
* WikiText dataset

* Lianguage = 2 — log T(Wigq1|wy, ..., wy)
L = Lgecision T /U:language

Kitchen Partial (10%) Kitchen Partial (1%) Kitchen Complete (30%)

40 1 504
2 204
S 30 404
(7] 154
T - S
Q
N 20 10 —— 30+
©
£
5 10 54 20
c

0 0 104

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
—— LaMo w. language loss —— LaMo w/o. language loss — DT

University of Washington

