
Energy-Based Models



Energy-based Models

• Goal of generative models:	
• a probability distribution of data: 	

• Requirements	
•  (non-negative)	

• 	

• Energy-based model:	
• Energy function: , parameterized by 	

•  (why exp?)	

•

P(x)

P(x) ≥ 0

∫x
P(x)dx = 1

E(x; θ) θ

P(x) =
1
z

exp(−E(x; θ))

z = ∫z
exp(−E(x; θ))dx



Boltzmann Machine

• Generative model 	

• 	

• , : temperature hyper-parameter	

• : parameter to learn	
• When  is binary, patterns are affecting each other through 

E(y) = −
1
2

y⊤Wy

P(y) =
1
z

exp(−
E(y)

T
) T

W
yi W



Boltzmann Machine: Training

• Objective: maximum likelihood learning (assume T =1):	
• Probability of one sample:	

 	

• Maximum log-likelihood:	

P(y) =
exp( 1

2 y⊤y)

∑y′￼exp(y′￼⊤Wy′￼)

L(W ) =
1
N ∑

y∈D

1
2

y⊤Wy − log∑
y′￼

exp(
1
2

y′￼⊤Wy′￼)



Boltzmann Machine: Training



Boltzmann Machine: Training



Boltzmann Machine with Hidden Neurons

• Visible and hidden neurons:	
• : visible, : hidden	

•

y h
P(y) = ∑

h

P(y, v)



Boltzmann Machine with Hidden Neurons: Training



Boltzmann Machine with Hidden Neurons: Training



Restricted Bolzmann Machine

• A structured Boltzmann Machine	
• Hidden neurons are only connected to visible neurons	
• No intra-layer connections	
• Invented by Paul Smolensky in ’89	
• Became more practical after Hinton invested fast learning algorithms in mid 
2000



Restricted Bolzmann Machine

• Computation Rules	
• Iterative sampling	

• Hidden neurons : , 	

• Visible neurons : 

hi zi = ∑
j

wijvj P(hi |v) =
1

1 + exp(−zi)

vj zj = ∑
i

wijhi, P(vj |h) =
1

1 + exp(−zj)



Restricted Bolzmann Machine

• Sampling:	
• Randomly initialize visible neurons 	
• Iterative sampling between hidden neurons and visible neurons	
• Get final sample 	

v0

(v∞, h∞)



Restricted Bolzmann Machine

• Maximum likelihood estimated:	

• 	

• No need to lift up the entire energy landscape!	
• Raising the neighborhood of desired patterns is sufficient	

∇wij
L(W ) =

1
NPK ∑

v∈P

v0ih0j −
1
M ∑ v∞ih∞j



Deep Bolzmann Machine

• Can we have a deep version of RBM?	
• Deep Belief Net (’06)	
• Deep Boltzmann Machine (’09)	

• Sampling?	
• Forward pass: bottom-up	
• Backward pass: top-down	

• Deep Bolzmann Machine	
• The very first deep generative model	
• Salakhudinov & Hinton	

deep belief net Deep Boltzmann Machine



Deep Bolzmann Machine



Summary

• Pros: powerful and flexible	

• An arbitrarily complex density function 	

• Cons: hard to sample / train	
• Hard to sample:	

• MCMC sampling	
• Partition function	

• No closed-form calculation for likelihood	
• Cannot optimize MLE loss exactly	
• MCMC sampling	

p(x) =
1
z

exp(−E(x))



Normalizing Flows



Intuition about easy to sample

• Goal: design  such that	
• Easy to sample	
• Tractable likelihood (density function)	

• Easy to sample	
• Assume a continuous variable 	
• e.g., Gaussian , or uniform 	
• ,  is also easy to sample	

p(x)

z
z ∼ N(0,1) z ∼ Unif[0,1]

x = f(z) x



Intuition about tractable density

• Goal: design  such that	
• Assume  is from an “easy” distribution	
•  has tractable likelihood	

• Uniform: 	
• Density 	
• , then 	

f(z; θ)
z

p(x) = p( f(z; θ))

z ∼ Unif[0,1]
p(z) = 1

x = 2z + 1 p(x) = ?
!:ℝ → ℝ, ! & = 2& + 1

p(x)

p(z)

x

z



Intuition about tractable density

• Goal: design  such that	
• Assume  is from an “easy” distribution	
•  has tractable likelihood	

• Uniform: 	
• Density 	
• , then 	

• , then  (for )	

• , 	

• Assume  is a bijection	

f(z; θ)
z

p(x) = p( f(z; θ))

z ∼ Unif[0,1]
p(z) = 1

x = 2z + 1 p(x) = 1/2
x = az + b p(x) = 1/ |a | a ≠ 0

x = f(z) p(z) |
dz
dx

| = | f′￼(z) |−1 p(z)

f(z)

!:ℝ → ℝ, ! & = 2& + 1

p(x)

p(z)

x

z



Change of variable

• Suppose  for some general non-linear 	
• The linearized change in volume is determined by the Jacobian of :	

•
	

• Given a bijection 	
• 	

•
	

• Since  (Jacobian of invertible function)	

•
	

x = f(z) f( ⋅ )
f( ⋅ )

∂f(z)
∂z

=

∂fz(x)
∂z1

⋯ ∂f1(z)
∂zd

⋯ ⋯ ⋯
∂fd(z)

∂z1
⋯

∂fd(z)
∂zd

f(z) : ℝd → ℝd

z = f −1(x)

p(x) = p( f −1(x)) det ( ∂f −1(x)
∂x ) = p(z) det ( ∂f −1(x)

∂x )
∂f −1

∂x
= ( ∂f

∂x )
−1

p(x) = p(z) det ( ∂f −1(x)
∂x ) = p(z) det ( ∂f(z)

∂z )
−1



Normalizing Flow

• Idea	
• Sample  from an “easy” distribution, e.g., standard Gaussian	
• Apply  bijections 	
• The final sample  has tractable desnity	

• Normalizing Flow	
•  where  and  is invertible	
• Every revertible function produces a normalized density function	

•
	

z0
K zi = fi(zi−1)

x = fK(zK)

z0 ∼ N(0,I ), zi = fi(zi−1), x = ZK x, zi ∈ ℝd fi

p(zi) = p(zi−1) det ( ∂fi
∂zi−1 )

−1



Normalizing Flow

• Generation is trivial	
• Sample  then apply the transformations	

• Log-likelihood	

• 	

•
	

z0

log p(x) = log p(Zk−1) − log det ( ∂fK
∂zK−1 )

log p(x) = log p(z0) − ∑
i

log det ( ∂fi
∂zi−1 ) ! "# ‼!



Normalizing Flow

• Naive flow model requires extremely expensive computation	
• Computing determinant of  matrices	

• Idea:	
• Design a good bijection  such that the determinant is easy to compute	

d × d

fi(z)



Plannar Flow

• Technical tool: Matrix Determinant Lemma:	
• 	

• Model:	
• 	
•  chosen to be 	

• 	

• Computation in  time	
• Remarks:	

•  to ensure invertibility	
• Require normalization on u and w	

det(A + uv⊤) + (1 + v⊤A−1u) det A

fθ(z) + z + u ⊙ h(w⊤z + b)
h( ⋅ ) tanh( ⋅ )(0 < h′￼( ⋅ ) < 1)

θ = [u, w, b], det ( ∂f
∂z ) = det(I + h′￼(w⊤z + b)uw⊤) = 1 + h′￼(w⊤z + b)u⊤w

O(d)

u⊤w > − 1



Planar Flow (Rezende & Mohamed, ’16)

• 	
• 10 planar transformations can transform simple distributions into a more complex 
one	

fθ(z) = z + uh (w⊤z + b)



Extensions

• Other flow models uses triangular Jacobian	
• Suppose  only depends on 	xi = fi(z) z≤i



Score-Based Models 
and Diffusion Models



Recap: Boltzmann Machine Training

• Objective: maximum likelihood learning (assume T =1):	
• Probability of one sample:	

 	

• Maximum log-likelihood:	

	

Can we avoid calculating the gradient of normalizing constant ( )?

P(y) =
exp( 1

2 y⊤Wy)

∑y′￼exp(y′￼⊤Wy′￼)

L(W ) =
1
N ∑

y∈D

1
2

y⊤Wy − log∑
y′￼

exp(
1
2

y′￼⊤Wy′￼)

∇x Zθ



Score Matching

• Score Function	
• Definition:	

 	

• Idea: directly fitting the score function:	

• 	

• No need to compute !	

• Problem:	
• How to compute ?

∇x log pdata(x) : ℝd → ℝd

min
θ

𝔼pdata
∥∇x log pθ(x) − ∇x log pdata(x)∥2

∇x Zθ

∇x log pdata(x)



Score Matching



Score Matching



Sliced Score Matching

L(θ) =
1
N ∑

x∈D

∥sθ(x)∥2 − 2 [Tr(Dsθ(x))]



Score Matching: Langevin Dynamics

xt+1 ← xt + ϵ∇xlog p(x) + 2ϵzt, zt ∼ N(0,I)

Stationary (equilibrium distribution): p(x)	



Practical Issues

• Score function estimation is inaccurate in low density regions (few data available).	

• Sampling is Slow



Annealing: Denoising Score Matching

• Fit several “smoothed” versions of :	
• Choose temperatures: 	

• 	

• Implementation: 	
• Take a sample x, draw a sample , output 	

pdata
σ1, σ2, . . . , σT

pσi,data(x) = pdata(x) * N(0,σi) = ∫δ
pdata(x − δ)N(x; δ, σi)dδ

z ∼ N(0,σi) x′￼= x + z .



Annealing: Denoising Score Matching

arg min
θ ∑

i

λ(σi)𝔼x∼pσi,data
∥sθ(x, i) − ∇xlog pσi,data(x)∥2



Annealed Langevin Dynamics



Diffusion Models

An image generated by Stable Diffusion based on the text prompt "a 
photograph of an astronaut riding a horse"



Perturbing Data with an SDE

• Let the number of noise scales approaches infinity!



Stochastic Differential Equations

dx = f(x, t)dt + g(t)dw
• x(0): real image, x(T): Gaussian noise. 	

• f(x,t): drift terms. g(t): diffusion coefficient.	

• dw: Brownian motion	
• 	

• f(x,t) and g(t) are parts of the model.	

• Variance Exploding SDE: .	

• Variance Preserving SDE: .	

•  are hyper-parameters.

w(t + u) − w(t) ∼ N(0,u)

dx =
d[σ2(t)]

dt
dw

dx = −
1
2

β(t)xdt + β(t)dw

σ(t), β(t)



Reversing the SDE

• Reversing the SDE: finding some stochastic process that goes from noise to data.	
• Use to generate data!	

• Theorem (Anderson ’82): there exists a reversing SDE, and it has a nice form:	

• Strategy: learn the score function, then solve this reverse SDE.

dx = [ f(x, t) − g2(t)∇xlog pt(x)]dt + g(t)dw



Reversing the SDE

• Learning the score function: use score matching!	

• Use existing techniques: sliced score matching	

• No need to tune temperature schedule 	
• Still need to choose a forward SDE, , etc	

• Typically choose 
λ(σi)

λ(t) ∝ 1/𝔼 [∥∇x(t)log p(x(t) ∣ x(0))∥2]

arg min
θ ∑

i

λ(σi)𝔼x∼pσi,data
∥sθ(x, i) − ∇xlog pσi,data(x)∥2

⇒ arg min
θ

𝔼t∼unif [0,T]𝔼pt(x) [λ(t)∥sθ(x, t) − ∇xlog pt(x)∥2]



Sampling by Solving the Reverse SDE

• Euler-Maruyama discretization:	
• 	
• 	
• 	

• Other solvers:	
• Runge-Kutta	
• Predictor-corrector (Song et al. ’21)	

Δx ← [ f(x, t) − g2(t)sθ(x, t)]Δt + g(t) Δtzt
x ← x + Δx
t ← t + Δt

dx = [ f(x, t) − g2(t)∇xlog pt(x)]dt + g(t)dw



Evaluating Probability by Converting to ODE

• De-randomizing SDE	

• Given an initial distribution and an ODE, we can evaluate probability at any time	
• Say given  and 	

• Solve via ODE.	

x(T ) ∼ pT dx = f(x, t)dt

dx = [ f(x, t) − g2(t)∇xlog pt(x)]dt + g(t)dw

dx = [ f(x, t) − g2(t)∇xlog pt(x)]dt, x(T ) ∼ pT

log p0(x(0)) = log pT(X(T )) + ∫
T

0
Tr(Dfθ(x, t))dt


