# **Generative Models**



# **Generative Adversarial Nets**



### **Implicit Generative Model**

- Goal: a sampler  $g(\cdot)$  to generate images
- A simple generator  $g(z; \theta)$ :
  - $z \sim N(0,I)$
  - $x = g(z; \theta)$  deterministic transformation
- Likelihood-free training:
  - ullet Given a dataset from some distribution  $p_{data}$
  - Goal:  $g(z;\theta)$  defines a distribution, we want this distribution  $pprox p_{data}$
  - Training: minimize  $D(g(z;\theta),p_{data})$ 
    - *D* is some distance metric (not likelihood)
  - ullet Key idea: **Learn a differentiable** D

### GAN (Goodfellow et al., '14)

- ullet Parameterize the discriminator  $D(\ \cdot\ ; \phi)$  with parameter  $\phi$
- Goal: learn  $\phi$  such that  $D(x;\phi)$  measures how likely x is from  $p_{data}$ 
  - $D(x, \phi) = 1$  if  $x \sim p_{data}$
  - $D(x, \phi) = 0$  if  $x! \sim p_{data}$
  - a.k.a., a binary classifier
- GAN: use a neural network for  $D(\cdot;\phi)$
- Training: need both negative and positive samples
  - Positive samples: just the training data
  - Negative samples: use our sampler  $g(\cdot;z)$  (can provide infinite samples).
- Overall objectives:
  - Generator:  $\theta^* = \max_{\theta} D(g(z; \theta); \phi)$
  - Discriminator uses MLE Training:

$$\phi^* = \max_{\phi} \mathbb{E}_{x \sim p_{data}} [\log D(x; \phi)] + \mathbb{E}_{\hat{x} \sim g(\cdot)} [\log(1 - D(\hat{x}; \phi))]$$

# GAN (Goodfellow et al., '14)

- Generator  $G(z; \theta)$  where  $z \sim N(0,I)$ 
  - Generate realistic data
- Discriminator  $D(x; \phi)$ 
  - Classify whether the data is real (from  $p_{data}$ ) or fake (from G)
- Objective function:

$$L(\theta, \phi) = \min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{data}} \left[ \log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim G} \left[ \log(1 - D(\hat{x}; \phi)) \right]$$

- Training procedure:
  - Collect dataset  $\{(x,1) | x \sim p_{data}\} \cup \{(\hat{x},0) \sim g(z;\theta)\}$
  - Train discriminator

$$D: L(\phi) = \mathbb{E}_{x \sim p_{data}} \left[ \log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim G} \left[ \log(1 - D(\hat{x}; \phi)) \right]$$

- Train generator  $G: L(\theta) = \mathbb{E}_{z \sim N(0,I)} \left[ \log D(G(z;\theta),\phi) \right]$
- Repeat

# GAN (Goodfellow et al., '14)

Objective function:

$$L(\theta, \phi) = \min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{data}} \left[ \log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim G} \left[ \log(1 - D(\hat{x}; \phi)) \right]$$



### **Math Behind GAN**

### **Math Behind GAN**

# **KL-Divergence and JS-Divergence**



### **Math Behind GAN**

#### **Evaluation of GAN**

- No p(x) in GAN.
- Idea: use a trained classifier  $f(y \mid x)$ :
- If  $x \sim p_{data}$ , f(y | x) should have low entropy
  - Otherwise,  $f(y \mid x)$  close to uniform.
- Samples from *G* should be diverse:
  - $p_f(y) = \mathbb{E}_{x \sim G}[f(y \mid x)]$  close to uniform.



Similar labels sum to give focussed distribution



Different labels sum to give uniform distribution



#### **Evaluation of GAN**

- Inception Score (IS, Salimans et al. '16)
  - Use Inception V3 trained on ImageNet as f(y | x)

• 
$$IS = \exp\left(\mathbb{E}_{x \sim G}\left[KL(f(y|x)||p_f(y)))\right]\right)$$

Higher the better

Marginal distribution



#### **Comments on GAN**

- Other evaluation metrics:
  - Fréchet Inception Distance (FID): Wasserstein distance between Gaussians
- Mode collapse:
  - The generator only generate a few type of samples.
  - Or keep oscillating over a few modes.
- Training instability:
  - Discriminator and generator may keep oscillating
  - Example: -xy, generator x, discriminatory. NE: x = y = 0 but GD oscillates.
  - No stopping criteria.
  - Use Wsserstein GAN (Arjovsky et al. '17):

$$\min_{G} \max_{f: \mathsf{Lip}(f) \le 1} \mathbb{E}_{x \sim p_{data}} \left[ f(x) \right] - \mathbb{E}_{\hat{x} \sim p_{G}} [f(\hat{x})]$$

And need many other tricks...

# Variational Autoencoder



#### **Architecture**

- Auto-encoder:  $x \to z \to x$
- Encoder:  $q(z | x; \phi) : x \to z$
- Decoder:  $p(x | z; \theta) : z \to x$

• Isomorphic Gaussian:

$$q(z | x; \phi) = N(\mu(x; \phi), \operatorname{diag}(\exp(\sigma(x; \phi))))$$

- Gaussian prior: p(z) = N(0,I)
- Gaussian likelihood:  $p(x | z; \theta) \sim N(f(z; \theta), I)$

 Probabilistic model interpretation: latent variable model.



# **VAE Training**

- Training via optimizing ELBO
  - $L(\phi, \theta; x) = \mathbb{E}_{z \sim q(z|x;\phi)}[\log p(z|x;\theta)] KL(q(z|x;\phi)||p(z))$
  - Likelihood term + KL penalty
- KL penalty for Gaussians has closed form.
- Likelihood term (reconstruction loss):
  - Monte-Carlo estimation
  - Draw samples from  $q(z|x;\phi)$
  - Compute gradient of  $\theta$ :

• 
$$x \sim N(f(z; \theta); I)$$
 No g
•  $p(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2} ||x - f(z; \theta)||_2^2)$ 



### **VAE Training**

- Likelihood term (reconstruction loss):
  - Gradient for  $\phi$  . Loss:  $L(\phi) = \mathbb{E}_{z \sim q(z;\phi)} \left[ \log p(x \mid z) \right]$
  - Reparameterization trick:

• 
$$z \sim N(\mu, \Sigma) \Leftrightarrow z = \mu + \epsilon, \epsilon \sim N(0, \Sigma)$$

- $L(\phi) \propto \mathbb{E}_{z \sim q(z|\phi)} \left[ ||f(z;\theta) x||_2^2 \right]$  $\propto \mathbb{E}_{\epsilon \sim N(0,I)} \left[ ||f(\mu(x;\phi) + \sigma(x;\phi) \cdot \epsilon; \theta) - x||_2^2 \right]$
- Monte-Carlo estimate for  $\nabla L(\phi)$
- End-to-end training



#### VAE vs. AE

- AE: classical unsupervised representation learning method.
- VAR: a probabilistic model of AE
  - AE + Gaussian noise on z.
  - ullet KL penalty:  $L_2$  constraint on the latent vector z





#### **Conditioned VAE**

• Semi-supervised learning: some labels are also available



conditioned generation

#### **Comments on VAE**

- Pros:
  - Flexible architecture
  - Stable training
- Cons:
  - Inaccurate probability evaluation (approximate inference)

# **Energy-Based Models**



# **Energy-based Models**

- Goal of generative models:
  - a probability distribution of data: P(x)
- Requirements
  - $P(x) \ge 0$  (non-negative)

$$\int_{X} P(x)dx = 1$$

- Energy-based model:
  - Energy function:  $E(x; \theta)$ , parameterized by  $\theta$
  - $P(x) = \frac{1}{z} \exp(-E(x;\theta))$  (why exp?)  $z = \int_{z} \exp(-E(x;\theta))dx$

#### **Boltzmann Machine**

- Generative model

  - $\bullet \ E(y) = -\frac{1}{2} y^{\top} W y$   $\bullet \ P(y) = \frac{1}{z} \exp(-\frac{E(y)}{T}) \text{, $T$: temperature hyper-parameter}$
  - W: parameter to learn
- ullet When  $y_i$  is binary, patterns are affecting each other through W



$$z_i = \frac{1}{T} \sum_j w_{ji} s_j$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

### **Boltzmann Machine: Training**

- Objective: maximum likelihood learning (assume T = 1):
  - Probability of one sample:

$$P(y) = \frac{\exp(\frac{1}{2}y^{\mathsf{T}}y)}{\sum_{y'} \exp(y'^{\mathsf{T}}Wy')}$$

• Maximum log-likelihood:

$$L(W) = \frac{1}{N} \sum_{y \in D} \frac{1}{2} y^{\mathsf{T}} W y - \log \sum_{y'} \exp(\frac{1}{2} y'^{\mathsf{T}} W y')$$

# **Boltzmann Machine: Training**

# **Boltzmann Machine: Training**

#### **Boltzmann Machine with Hidden Neurons**

- Visible and hidden neurons:
  - y: visible, h: hidden

$$P(y) = \sum_{h} P(y, v)$$



# **Boltzmann Machine with Hidden Neurons: Training**

# **Boltzmann Machine with Hidden Neurons: Training**

- A structured Boltzmann Machine
  - Hidden neurons are only connected to visible neurons
  - No intra-layer connections
  - Invented by Paul Smolensky in '89
  - Became more practical after Hinton invested fast learning algorithms in mid
     2000



- Computation Rules
  - Iterative sampling

• Hidden neurons 
$$h_i$$
:  $z_i = \sum_j w_{ij} v_j$ ,  $P(h_i \mid v) = \frac{1}{1 + \exp(-z_i)}$   
• Visible neurons  $v_j$ :  $z_j = \sum_i w_{ij} h_i$ ,  $P(v_j \mid h) = \frac{1}{1 + \exp(-z_j)}$ 

Visible neurons 
$$v_j$$
:  $z_j = \sum_i w_{ij} h_i$ ,  $P(v_j | h) = \frac{1}{1 + \exp(-z_j)}$ 



**HIDDEN** 

VISIBLE

- Sampling:
  - Randomly initialize visible neurons  $v_0$
  - Iterative sampling between hidden neurons and visible neurons
  - Get final sample  $(v_{\infty}, h_{\infty})$



Maximum likelihood estimated:

$$\quad \nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{v \in P} v_{0i} h_{0j} - \frac{1}{M} \sum_{v \in P} v_{\infty i} h_{\infty j}$$

- No need to lift up the entire energy landscape!
  - Raising the neighborhood of desired patterns is sufficient



#### **Deep Bolzmann Machine**

- Can we have a deep version of RBM?
  - Deep Belief Net ('06)
  - Deep Boltzmann Machine ('09)
- Sampling?
  - Forward pass: bottom-up
  - Backward pass: top-down
- Deep Bolzmann Machine
  - The very first deep generative model
  - Salakhudinov & Hinton



# **Deep Bolzmann Machine**



# **Summary**

- Pros: powerful and flexible
  - An arbitrarily complex density function  $p(x) = \frac{1}{z} \exp(-E(x))$
- Cons: hard to sample / train
  - Hard to sample:
    - MCMC sampling
  - Partition function
    - No closed-form calculation for likelihood
    - Cannot optimize MLE loss exactly
    - MCMC sampling

# **Normalizing Flows**



#### Intuition about easy to sample

- Goal: design p(x) such that
  - Easy to sample
  - Tractable likelihood (density function)
- Easy to sample
  - Assume a continuous variable z
  - e.g., Gaussian  $z \sim N(0,1)$ , or uniform  $z \sim \text{Unif}[0,1]$
  - x = f(z), x is also easy to sample

### Intuition about tractable density

- Goal: design  $f(z; \theta)$  such that
  - Assume z is from an "easy" distribution
  - $p(x) = p(f(z; \theta))$  has tractable likelihood
- Uniform:  $z \sim \text{Unif}[0,1]$ 
  - Density p(z) = 1
  - x = 2z + 1, then p(x) = ?



# Intuition about tractable density

- Goal: design  $f(z; \theta)$  such that
  - Assume z is from an "easy" distribution
  - $p(x) = p(f(z; \theta))$  has tractable likelihood
- Uniform:  $z \sim \text{Unif}[0,1]$ 
  - Density p(z) = 1
  - x = 2z + 1, then p(x) = 1/2
    - x = az + b, then p(x) = 1/|a| (for  $a \ne 0$ )

• 
$$x = f(z), p(z) \left| \frac{dz}{dx} \right| = |f'(z)|^{-1} p(z)$$

• Assume f(z) is a bijection



# Change of variable

- Suppose x = f(z) for some general non-linear  $f(\cdot)$ 
  - The linearized change in volume is determined by the Jacobian of  $f(\cdot)$ :

$$\frac{\partial f(z)}{\partial z} = \begin{bmatrix} \frac{\partial f_z(x)}{\partial z_1} & \dots & \frac{\partial f_1(z)}{\partial z_d} \\ \dots & \dots & \dots \\ \frac{\partial f_d(z)}{\partial z_1} & \dots & \frac{\partial f_d(z)}{\partial z_d} \end{bmatrix}$$

- Given a bijection  $f(z): \mathbb{R}^d \to \mathbb{R}^d$ 
  - $\bullet \ z = f^{-1}(x)$

$$p(x) = p(f^{-1}(x)) \left| \det \left( \frac{\partial f^{-1}(x)}{\partial x} \right) \right| = p(z) \left| \det \left( \frac{\partial f^{-1}(x)}{\partial x} \right) \right|$$

- Since  $\frac{\partial f^{-1}}{\partial x} = \left(\frac{\partial f}{\partial x}\right)^{-1}$  (Jacobian of invertible function)
- $p(x) = p(z) \left| \det \left( \frac{\partial f^{-1}(x)}{\partial x} \right) \right| = p(z) \left| \det \left( \frac{\partial f(z)}{\partial z} \right) \right|^{-1}$

# **Normalizing Flow**

- Idea
  - Sample  $z_0$  from an "easy" distribution, e.g., standard Gaussian
  - Apply K bijections  $z_i = f_i(z_{i-1})$
  - The final sample  $x = f_K(z_K)$  has tractable desnity
- Normalizing Flow
  - $z_0 \sim N(0,I), z_i = f_i(z_{i-1}), x = Z_K$  where  $x, z_i \in \mathbb{R}^d$  and  $f_i$  is invertible
  - Every revertible function produces a normalized density function

$$p(z_i) = p(z_{i-1}) \left| \det \left( \frac{\partial f_i}{\partial z_{i-1}} \right) \right|^{-1}$$



### **Normalizing Flow**

- Generation is trivial
  - Sample  $z_0$  then apply the transformations
- Log-likelihood

$$\log p(x) = \log p(Z_{k-1}) - \log \left| \det \left( \frac{\partial f_K}{\partial z_{K-1}} \right) \right|$$

$$\log p(x) = \log p(z_0) - \sum_{i} \log \left| \det \left( \frac{\partial f_i}{\partial z_{i-1}} \right) \right|$$

$$O(d^3)!!!!$$



### **Normalizing Flow**

- Naive flow model requires extremely expensive computation
  - Computing determinant of  $d \times d$  matrices
- Idea:
  - Design a good bijection  $f_i(z)$  such that the determinant is easy to compute

#### **Plannar Flow**

- Technical tool: Matrix Determinant Lemma:
  - $\det(A + uv^{\mathsf{T}}) + (1 + v^{\mathsf{T}}A^{-1}u) \det A$
- Model:
  - $f_{\theta}(z) + z + u \odot h(w^{\mathsf{T}}z + b)$
  - $h(\cdot)$  chosen to be  $tanh(\cdot)(0 < h'(\cdot) < 1)$

$$\bullet \theta = [u, w, b], \det \left(\frac{\partial f}{\partial z}\right) = \det(I + h'(w^{\mathsf{T}}z + b)uw^{\mathsf{T}}) = 1 + h'(w^{\mathsf{T}}z + b)u^{\mathsf{T}}w$$

- Computation in O(d) time
- Remarks:
  - $u^{\mathsf{T}}w > -1$  to ensure invertibility
  - Require normalization on u and w

# Planar Flow (Rezende & Mohamed, '16)

- $f_{\theta}(z) = z + uh\left(w^{\mathsf{T}}z + b\right)$
- 10 planar transformations can transform simple distributions into a more complex one



#### **Extensions**

- Other flow models uses triangular Jacobian
  - Suppose  $x_i = f_i(z)$  only depends on  $z_{\leq i}$