Generative Models

Generative Adversarial Nets

Implicit Generative Model

- Goal: a sampler $g(\cdot)$ to generate images
- A simple generator $g(z; \theta)$:
	- $z \sim N(0,I)$
	- $x = g(z; \theta)$ deterministic transformation
- Likelihood-free training:
	- \bullet Given a dataset from some distribution p_{data}
	- Goal: $g(z; \theta)$ defines a distribution, we want this distribution $\approx p_{data}$
	- Training: minimize $D(g(z; \theta), p_{data})$
		- *D* is some distance metric (not likelihood)
	- Key idea: *Learn* **a differentiable** *D*

GAN (Goodfellow et al., '14)

- Parameterize the discriminator $D(\cdot ; \phi)$ with parameter ϕ
- Goal: learn ϕ such that $D(x; \phi)$ measures how likely x is from p_{data}
	- $D(x, \phi) = 1$ if $x \sim p_{data}$
	- $D(x, \phi) = 0$ if $x! \sim p_{data}$
	- a.k.a., a binary classifier
- GAN: use a neural network for $D({\,\cdot\,};\phi)$
- **Training:** need both negative and positive samples
	- Positive samples: just the training data
	- Negative samples: use our sampler $g(\cdot; z)$ (can provide infinite samples).
- **• Overall objectives:**
	- **•** Generator: $\theta^* = \max_{\theta} D(g(z; \theta); \phi)$
	- **•** Discriminator uses MLE Training: *θ*

$$
\phi^* = \max_{\phi} \mathbb{E}_{x \sim p_{data}}[\log D(x; \phi)] + \mathbb{E}_{\hat{x} \sim g(\cdot)}[\log(1 - D(\hat{x}; \phi))]
$$

GAN (Goodfellow et al., '14)

- Generator $G(z; \theta)$ where $z \sim N(0, I)$
	- Generate realistic data
- Discriminator *D*(*x*; *ϕ*)
	- Classify whether the data is real (from p_{data}) or fake (from G)
- Objective function:

$$
L(\theta, \phi) = \min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim G} \left[\log(1 - D(\hat{x}; \phi)) \right]
$$

- Training procedure:
	- Collect dataset $\{(x,1) | x \sim p_{data}\} \cup \{(\hat{x},0) \sim g(z;\theta)\}\$
	- Train discriminator

D : *L*(ϕ) = $\mathbb{E}_{x \sim p_{data}} [\log D(x; \phi)] + \mathbb{E}_{\hat{x} \sim G} [\log(1 - D(\hat{x}; \phi))]$

- \bullet Train generator $G: L(\theta) = \mathbb{E}_{z \sim N(0,I)} \left[\log D(G(z; \theta), \phi) \right]$
- Repeat

GAN (Goodfellow et al., '14)

• Objective function:

 $L(\theta, \phi) = \min$ *θ* max *ϕ* $\left[\log D(x; \phi)\right]$ + $\mathbb{E}_{\hat{x} \sim G}$ [log(1 − *D*($\hat{x}; \phi$))]

Math Behind GAN

Math Behind GAN

KL-Divergence and JS-Divergence

Math Behind GAN

Evaluation of GAN

- No $p(x)$ in GAN.
- Idea: use a trained classifier $f(y | x)$:
- If $x \sim p_{data} f(y|x)$ should have low entropy
	- Otherwise, $f(y | x)$ close to uniform.
- Samples from G should be diverse:
	- $p_f(y) = \mathbb{E}_{x \sim G}[f(y|x)]$ close to uniform.

Similar labels sum to give focussed distribution

Different labels sum to give uniform distribution

Evaluation of GAN

- **• Inception Score** (IS, Salimans et al. '16)
	- **•** Use Inception V3 trained on ImageNet as *f*(*y* | *x*)

$$
\bullet IS = \exp\left(\mathbb{E}_{x \sim G}\left[KL(f(y|x) | p_f(y)))\right]\right)
$$

• Higher the better

Marginal distribution

Comments on GAN

- Other evaluation metrics:
	- Fréchet Inception Distance (FID): Wasserstein distance between Gaussians
- Mode collapse:
	- The generator only generate a few type of samples.
	- Or keep oscillating over a few modes.
- Training instability:
	- Discriminator and generator may keep oscillating
	- Example: $-xy$, generator x, discriminatory. NE: $x = y = 0$ but GD oscillates.
	- No stopping criteria.
	- Use Wsserstein GAN (Arjovsky et al. '17):
		- min *G* max $f:$ **Lip** (f) ≤1 $\mathbb{E}_{\hat{x} \sim p_{data}} [f(x)] - \mathbb{E}_{\hat{x} \sim p_{G}} [f(\hat{x})]$
	- And need many other tricks…

Variational Autoencoder

Architecture

- Auto-encoder: $x \to z \to x$
- Encoder: $q(z | x; \phi) : x \to z$
- Decoder: $p(x | z; \theta) : z \rightarrow x$

- Isomorphic Gaussian:
- $q(z|x; \phi) = N(\mu(x; \phi), \text{diag}(\exp(\sigma(x; \phi))))$
- Gaussian prior: $p(z) = N(0,I)$
- Gaussian likelihood: *p*(*x* |*z*; *θ*) ∼ *N*(*f*(*z*; *θ*), *I*)
- Probabilistic model interpretation: latent variable model.

VAE Training

- Training via optimizing ELBO
	- \bullet *L*(ϕ , θ ; *x*) = $\mathbb{E}_{z \sim q(z|x; \phi)}[\log p(z | x; \theta)] KL(q(z | x; \phi) | p(z))$
	- Likelihood term + KL penalty
- KL penalty for Gaussians has closed form.
- Likelihood term (reconstruction loss):
	- Monte-Carlo estimation
	- Draw samples from $q(z|x; \phi)$
	- Compute gradient of θ :

VAE Training

• Likelihood term (reconstruction loss):

• Gradient for ϕ . Loss: $L(\phi) = \mathbb{E}_{z \sim q(z; \phi)} [\log p(x | z)]$

• Reparameterization trick:

$$
\bullet z \sim N(\mu, \Sigma) \Leftrightarrow z = \mu + \epsilon, \epsilon \sim N(0, \Sigma)
$$

• $L(\phi) \propto \mathbb{E}_{z \sim q(z|\phi)} \left[\left\| f(z; \theta) - x \right\|_2^2 \right]$ $\alpha \mathbb{E}_{\epsilon \sim N(0,I)} \left[\left\| f(\mu(x; \phi) + \sigma(x; \phi) \cdot \epsilon; \theta) - x \right\|^2_2 \right]$

● Monte-Carlo estimate for $\nabla L(\phi)$

• End-to-end training

VAE vs. AE

- AE: classical unsupervised representation learning method.
- VAR: a probabilistic model of AE
	- AE + Gaussian noise on *z*
	- KL penalty: L_2 constraint on the latent vector z

Conditioned VAE

• Semi-supervised learning: some labels are also available

conditioned generation

Comments on VAE

- Pros:
	- Flexible architecture
	- Stable training
- Cons:
	- Inaccurate probability evaluation (approximate inference)

Energy-Based Models

Energy-based Models

- Goal of generative models:
	- a probability distribution of data: *P*(*x*)
- Requirements
	- $P(x) \geq 0$ (non-negative) • ∫*x* $P(x)dx=1$
- Energy-based model:
	- Energy function: $E(x; \theta)$, parameterized by θ

•
$$
P(x) = \frac{1}{z} \exp(-E(x; \theta))
$$
 (why exp?)
\n• $z = \int_{z} \exp(-E(x; \theta)) dx$

Boltzmann Machine

• Generative model

•
$$
E(y) = -\frac{1}{2}y^T Wy
$$

\n• $P(y) = -\frac{1}{z} exp(-\frac{E(y)}{T})$, *T*: temperature hyper-parameter

- W: parameter to learn
- When y_i is binary, patterns are affecting each other through W

$$
z_i = \frac{1}{T} \sum_j w_{ji} s_j
$$

$$
P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}
$$

Boltzmann Machine: Training

- Objective: maximum likelihood learning (assume T =1):
	- Probability of one sample:

$$
P(y) = \frac{\exp(\frac{1}{2}y^{\top}y)}{\sum_{y'} \exp(y'^{\top}Wy')}
$$

• Maximum log-likelihood:

$$
L(W) = \frac{1}{N} \sum_{y \in D} \frac{1}{2} y^{\top} W y - \log \sum_{y'} \exp(\frac{1}{2} y'^{\top} W y')
$$

Boltzmann Machine: Training

Boltzmann Machine: Training

Boltzmann Machine with Hidden Neurons

- Visible and hidden neurons:
	- y : vis<u>ibl</u>e, h : hidden

$$
P(y) = \sum_{h} P(y, v)
$$

Boltzmann Machine with Hidden Neurons: Training

Boltzmann Machine with Hidden Neurons: Training

- A structured Boltzmann Machine
	- Hidden neurons are only connected to visible neurons
	- No intra-layer connections
	- Invented by Paul Smolensky in '89
	- Became more practical after Hinton invested fast learning algorithms in mid 2000

- Computation Rules
	- Iterative sampling

\n- \n Hidden neurons
$$
h_i: z_i = \sum_j w_{ij} v_j
$$
, $P(h_i | v) = \frac{1}{1 + \exp(-z_i)}$ \n
\n- \n Visible neurons $v_j: z_j = \sum_i w_{ij} h_i$, $P(v_j | h) = \frac{1}{1 + \exp(-z_j)}$ \n
\n

- Sampling:
	- Randomly initialize visible neurons v_0
	- Iterative sampling between hidden neurons and visible neurons
	- Get final sample (*v*∞, *h*∞)

• Maximum likelihood estimated:

$$
\bullet \ \nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{v \in P} v_{0i} h_{0j} - \frac{1}{M} \sum v_{\infty i} h_{\infty j}
$$

- No need to lift up the entire energy landscape!
	- Raising the neighborhood of desired patterns is sufficient

Deep Bolzmann Machine

- Can we have a **deep** version of RBM?
	- Deep Belief Net ('06)
	- Deep Boltzmann Machine ('09)
- Sampling?
	- Forward pass: bottom-up
	- Backward pass: top-down
- Deep Bolzmann Machine
	- The very first deep generative model
	- Salakhudinov & Hinton

Deep Bolzmann Machine

Deep Boltzmann Machine

Gaussian visible units (raw pixel data)

الترابية

一本

الشين

 π

个

忼

鲈

微質

బ్

盖叶

适

Summary

- Pros: powerful and flexible
	- An arbitrarily complex density function $p(x) =$ 1 *z* $\exp(-E(x))$
- Cons: hard to sample / train
	- Hard to sample:
		- MCMC sampling
	- Partition function
		- No closed-form calculation for likelihood
		- Cannot optimize MLE loss exactly
		- MCMC sampling

Normalizing Flows

Intuition about easy to sample

- Goal: design $p(x)$ such that
	- Easy to sample
	- Tractable likelihood (density function)
- Easy to sample
	- Assume a continuous variable *z*
	- e.g., Gaussian $z \sim N(0,1)$, or uniform $z \sim$ Unif[0,1]
	- $x = f(z)$, *x* is also easy to sample

Intuition about tractable density

- Goal: design $f(z; \theta)$ such that
	- Assume *is from an "easy" distribution*
	- $p(x) = p(f(z; \theta))$ has tractable likelihood
- Uniform: *z* ∼ Unif[0,1]
	- Density $p(z) = 1$
	- $x = 2z + 1$, then $p(x) = ?$

Intuition about tractable density

- Goal: design $f(z; \theta)$ such that
	- Assume *is from an "easy" distribution*
	- $p(x) = p(f(z; \theta))$ has tractable likelihood
- Uniform: *z* ∼ Unif[0,1]
	- Density $p(z) = 1$

•
$$
x = 2z + 1
$$
, then $p(x) = 1/2$

• $x = az + b$, then $p(x) = 1/|a|$ (for $a \neq 0$)

•
$$
x = f(z), p(z) | \frac{dz}{dx} | = |f'(z)|^{-1} p(z)
$$

• Assume $f(z)$ is a bijection

Change of variable

• Suppose $x = f(z)$ for some general non-linear $f(\cdot)$

• The linearized change in volume is determined by the Jacobian of $f(\cdot)$:

$$
\frac{\partial f(z)}{\partial z} = \begin{bmatrix} \frac{\partial f(z)}{\partial z_1} & \cdots & \frac{\partial f_1(z)}{\partial z_d} \\ \vdots & \ddots & \cdots \\ \frac{\partial f_d(z)}{\partial z_1} & \cdots & \frac{\partial f_d(z)}{\partial z_d} \end{bmatrix}
$$
\n• Given a bijection $f(z) : \mathbb{R}^d \to \mathbb{R}^d$
\n• $z = f^{-1}(x)$
\n• $p(x) = p(f^{-1}(x)) \left| \det \left(\frac{\partial f^{-1}(x)}{\partial x} \right) \right| = p(z) \left| \det \left(\frac{\partial f^{-1}(x)}{\partial x} \right) \right|$
\n• Since $\frac{\partial f^{-1}}{\partial x} = \left(\frac{\partial f}{\partial x} \right)^{-1}$ (Jacobian of invertible function)
\n• $p(x) = p(z) \left| \det \left(\frac{\partial f^{-1}(x)}{\partial x} \right) \right| = p(z) \left| \det \left(\frac{\partial f(z)}{\partial z} \right) \right|^{-1}$

Normalizing Flow

- Idea
	- Sample z_0 from an "easy" distribution, e.g., standard Gaussian
	- Apply *K* bijections $z_i = f_i(z_{i-1})$
	- The final sample $x = f_K(z_K)$ has tractable desnity
- Normalizing Flow
	- $z_0 \sim N(0,I), z_i = f_i(z_{i-1}), x = Z_K$ where $x, z_i \in \mathbb{R}^d$ and f_i is invertible
	- Every revertible function produces a normalized density function

Normalizing Flow

- Generation is trivial
	- Sample z_0 then apply the transformations
- Log-likelihood

$$
\log p(x) = \log p(Z_{k-1}) - \log \left| \det \left(\frac{\partial f_K}{\partial z_{K-1}} \right) \right|
$$

\n
$$
\log p(x) = \log p(z_0) - \sum_{i} \log \left| \det \left(\frac{\partial f_i}{\partial z_{i-1}} \right) \right|
$$
 O(d³)!!!

Normalizing Flow

- Naive flow model requires extremely expensive computation
	- Computing determinant of $d \times d$ matrices
- Idea:
	- Design a good bijection $f_i(z)$ such that the determinant is easy to compute

Plannar Flow

- Technical tool: Matrix Determinant Lemma:
	- $\det(A + uv^{\top}) + (1 + v^{\top}A^{-1}u) \det A$
- Model:
	- $f_{\theta}(z) + z + u \odot h(w^{\top}z + b)$
	- $h(\cdot)$ chosen to be $\tanh(\cdot)(0 < h'(\cdot) < 1)$

$$
\bullet \theta = [u, w, b], \det\left(\frac{\partial f}{\partial z}\right) = \det(I + h'(w^\top z + b)uw^\top) = 1 + h'(w^\top z + b)u^\top w
$$

- Computation in $O(d)$ time
- Remarks:
	- u^Tw > − 1 to ensure invertibility
	- Require normalization on u and w

Planar Flow (Rezende & Mohamed, '16)

- $f_{\theta}(z) = z + uh(w^{\top}z + b)$
- 10 planar transformations can transform simple distributions into a more complex one

Extensions

- Other flow models uses triangular Jacobian
	- Suppose $x_i = f_i(z)$ only depends on $z_{\leq i}$