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Implicit Generative Model

• Goal: a sampler  to generate images	
• A simple generator :	

• 	
•  deterministic transformation	

• Likelihood-free training:	
• Given a dataset from some distribution 	
• Goal:  defines a distribution, we want this distribution  	
• Training: minimize 	

•  is some distance metric (not likelihood)	
• Key idea: Learn a differentiable 

g( ⋅ )
g(z; θ)

z ∼ N(0,I )
x = g(z; θ)

pdata
g(z; θ) ≈ pdata

D(g(z; θ), pdata)
D

D



GAN (Goodfellow et al., ‘14)
• Parameterize the discriminator  with parameter 	

• Goal: learn  such that  measures how likely  is from 	
•  if 	
•  if 	
• a.k.a., a binary classifier	

• GAN: use a neural network for 	

• Training: need both negative and positive samples	
• Positive samples: just the training data	
• Negative samples: use our sampler  (can provide infinite samples).	

• Overall objectives:	
• Generator: 	

• Discriminator uses MLE Training: 
	

D( ⋅ ; ϕ) ϕ

ϕ D(x; ϕ) x pdata
D(x, ϕ) = 1 x ∼ pdata
D(x, ϕ) = 0 x! ∼ pdata

D( ⋅ ; ϕ)

g( ⋅ ; z)

θ* = max
θ

D(g(z; θ); ϕ)

ϕ* = max
ϕ

𝔼x∼pdata
[log D(x; ϕ)] + 𝔼 ̂x∼g(⋅)[log(1 − D( ̂x; ϕ))]



GAN (Goodfellow et al., ‘14)

• Generator  where 	
• Generate realistic data	

• Discriminator 	
• Classify whether the data is real (from ) or fake (from )	

• Objective function:	
	

• Training procedure:	
• Collect dataset 	
• Train discriminator

	
• Train generator 	
• Repeat

G(z; θ) z ∼ N(0,I )

D(x; ϕ)
pdata G

L(θ, ϕ) = min
θ

max
ϕ

𝔼x∼pdata [log D(x; ϕ)] + 𝔼 ̂x∼G [log(1 − D( ̂x; ϕ))]

{(x,1) |x ∼ pdata} ∪ {( ̂x,0) ∼ g(z; θ)}

D : L(ϕ) = 𝔼x∼pdata [log D(x; ϕ)] + 𝔼 ̂x∼G [log(1 − D( ̂x; ϕ))]
G : L(θ) = 𝔼z∼N(0,I) [log D(G(z; θ), ϕ)]



GAN (Goodfellow et al., ‘14)

• Objective function:	
L(θ, ϕ) = min

θ
max

ϕ
𝔼x∼pdata [log D(x; ϕ)] + 𝔼 ̂x∼G [log(1 − D( ̂x; ϕ))]



Math Behind GAN



Math Behind GAN



KL-Divergence and JS-Divergence



Math Behind GAN



Evaluation of GAN

• No  in GAN.	
• Idea: use a trained classifier :	
• If ,  should have low entropy	

• Otherwise,  close to uniform.	
• Samples from  should be diverse:	

•  close to uniform.

p(x)
f(y ∣ x)

x ∼ pdata f(y |x)
f(y ∣ x)

G
pf (y) = 𝔼x∼G[ f(y |x)]



Evaluation of GAN

• Inception Score (IS, Salimans et al. ’16)	
• Use Inception V3 trained on ImageNet as 	

•  	

• Higher the better

f(y |x)

IS = exp (𝔼x∼G [KL( f(y |x) | |pf (y)))])



Comments on GAN

• Other evaluation metrics:	
• Fréchet Inception Distance (FID): Wasserstein distance between Gaussians	

• Mode collapse: 	
• The generator only generate a few type of samples.	
• Or keep oscillating over a few modes.	

• Training instability:	
• Discriminator and generator may keep oscillating	
• Example: , generator , discriminator . NE:  but GD oscillates.	
• No stopping criteria.	
• Use Wsserstein GAN (Arjovsky et al. ’17):

	

• And need many other tricks…

−xy x y x = y = 0

min
G

max
f:Lip( f )≤1

𝔼x∼pdata [f(x)] − 𝔼 ̂x∼pG
[ f( ̂x)]



Variational 
Autoencoder



Architecture

• Auto-encoder: 	
• Encoder: 	
• Decoder: 	

• Isomorphic Gaussian:	
	

• Gaussian prior: 	
• Gaussian likelihood: 	

• Probabilistic model interpretation: latent variable 
model.

x → z → x
q(z |x; ϕ) : x → z
p(x |z; θ) : z → x

q(z |x; ϕ) = N(μ(x; ϕ), diag(exp(σ(x; ϕ))))
p(z) = N(0,I )

p(x |z; θ) ∼ N( f(z; θ), I )



VAE Training

• Training via optimizing ELBO	
• 	
• Likelihood term + KL penalty	

• KL penalty for Gaussians has closed form.	
• Likelihood term (reconstruction loss):	

• Monte-Carlo estimation	
• Draw samples from 	
• Compute gradient of :	

• 	

•

L(ϕ, θ; x) = 𝔼z∼q(z|x;ϕ)[log p(z |x; θ)] − KL (q(z |x; ϕ) | |p(z))

q(z |x; ϕ)
θ

x ∼ N( f(z; θ); I )
p(x) =

1

2π
exp(−

1
2

∥x − f(z; θ)∥2
2)



VAE Training

• Likelihood term (reconstruction loss):	
• Gradient for Loss: 	
• Reparameterization trick: 	

• 	
• 	

	
• Monte-Carlo estimate for 	

• End-to-end training	

ϕ . L(ϕ) = 𝔼z∼q(z;ϕ) [log p(x |z)]
z ∼ N(μ, Σ) ⇔ z = μ + ϵ, ϵ ∼ N(0,Σ)

L(ϕ) ∝ 𝔼z∼q(z|ϕ) [∥f(z; θ) − x∥2
2]

∝ 𝔼ϵ∼N(0,I) [∥f(μ(x; ϕ) + σ(x; ϕ) ⋅ ϵ; θ) − x∥2
2]

∇L(ϕ)



VAE vs. AE

• AE: classical unsupervised representation learning method.	
• VAR: a probabilistic model of AE	

• AE + Gaussian noise on 	
• KL penalty:  constraint on the latent vector 	

z
L2 z



Conditioned VAE

• Semi-supervised learning: some labels are also available	



Comments on VAE

• Pros:	
• Flexible architecture	
• Stable training	

• Cons:	
• Inaccurate probability evaluation (approximate inference)



Energy-Based Models



Energy-based Models

• Goal of generative models:	
• a probability distribution of data: 	

• Requirements	
•  (non-negative)	

• 	

• Energy-based model:	
• Energy function: , parameterized by 	

•  (why exp?)	

•

P(x)

P(x) ≥ 0

∫x
P(x)dx = 1

E(x; θ) θ

P(x) =
1
z

exp(−E(x; θ))

z = ∫z
exp(−E(x; θ))dx



Boltzmann Machine

• Generative model 	

• 	

• , : temperature hyper-parameter	

• : parameter to learn	
• When  is binary, patterns are affecting each other through 

E(y) = −
1
2

y⊤Wy

P(y) =
1
z

exp(−
E(y)

T
) T

W
yi W



Boltzmann Machine: Training

• Objective: maximum likelihood learning (assume T =1):	
• Probability of one sample:	

 	

• Maximum log-likelihood:	

P(y) =
exp( 1

2 y⊤y)

∑y′￼exp(y′￼⊤Wy′￼)

L(W ) =
1
N ∑

y∈D

1
2

y⊤Wy − log∑
y′￼

exp(
1
2

y′￼⊤Wy′￼)



Boltzmann Machine: Training



Boltzmann Machine: Training



Boltzmann Machine with Hidden Neurons

• Visible and hidden neurons:	
• : visible, : hidden	

•

y h
P(y) = ∑

h

P(y, v)



Boltzmann Machine with Hidden Neurons: Training



Boltzmann Machine with Hidden Neurons: Training



Restricted Bolzmann Machine

• A structured Boltzmann Machine	
• Hidden neurons are only connected to visible neurons	
• No intra-layer connections	
• Invented by Paul Smolensky in ’89	
• Became more practical after Hinton invested fast learning algorithms in mid 
2000



Restricted Bolzmann Machine

• Computation Rules	
• Iterative sampling	

• Hidden neurons : , 	

• Visible neurons : 

hi zi = ∑
j

wijvj P(hi |v) =
1

1 + exp(−zi)

vj zj = ∑
i

wijhi, P(vj |h) =
1

1 + exp(−zj)



Restricted Bolzmann Machine

• Sampling:	
• Randomly initialize visible neurons 	
• Iterative sampling between hidden neurons and visible neurons	
• Get final sample 	

v0

(v∞, h∞)



Restricted Bolzmann Machine

• Maximum likelihood estimated:	

• 	

• No need to lift up the entire energy landscape!	
• Raising the neighborhood of desired patterns is sufficient	

∇wij
L(W ) =

1
NPK ∑

v∈P

v0ih0j −
1
M ∑ v∞ih∞j



Deep Bolzmann Machine

• Can we have a deep version of RBM?	
• Deep Belief Net (’06)	
• Deep Boltzmann Machine (’09)	

• Sampling?	
• Forward pass: bottom-up	
• Backward pass: top-down	

• Deep Bolzmann Machine	
• The very first deep generative model	
• Salakhudinov & Hinton	

deep belief net Deep Boltzmann Machine



Deep Bolzmann Machine



Summary

• Pros: powerful and flexible	

• An arbitrarily complex density function 	

• Cons: hard to sample / train	
• Hard to sample:	

• MCMC sampling	
• Partition function	

• No closed-form calculation for likelihood	
• Cannot optimize MLE loss exactly	
• MCMC sampling	

p(x) =
1
z

exp(−E(x))



Normalizing Flows



Intuition about easy to sample

• Goal: design  such that	
• Easy to sample	
• Tractable likelihood (density function)	

• Easy to sample	
• Assume a continuous variable 	
• e.g., Gaussian , or uniform 	
• ,  is also easy to sample	

p(x)

z
z ∼ N(0,1) z ∼ Unif[0,1]

x = f(z) x



Intuition about tractable density

• Goal: design  such that	
• Assume  is from an “easy” distribution	
•  has tractable likelihood	

• Uniform: 	
• Density 	
• , then 	

f(z; θ)
z

p(x) = p( f(z; θ))

z ∼ Unif[0,1]
p(z) = 1

x = 2z + 1 p(x) = ?
!:ℝ → ℝ, ! & = 2& + 1

p(x)

p(z)

x

z



Intuition about tractable density

• Goal: design  such that	
• Assume  is from an “easy” distribution	
•  has tractable likelihood	

• Uniform: 	
• Density 	
• , then 	

• , then  (for )	

• , 	

• Assume  is a bijection	

f(z; θ)
z

p(x) = p( f(z; θ))

z ∼ Unif[0,1]
p(z) = 1

x = 2z + 1 p(x) = 1/2
x = az + b p(x) = 1/ |a | a ≠ 0

x = f(z) p(z) |
dz
dx

| = | f′￼(z) |−1 p(z)

f(z)

!:ℝ → ℝ, ! & = 2& + 1

p(x)

p(z)

x

z



Change of variable

• Suppose  for some general non-linear 	
• The linearized change in volume is determined by the Jacobian of :	

•
	

• Given a bijection 	
• 	

•
	

• Since  (Jacobian of invertible function)	

•
	

x = f(z) f( ⋅ )
f( ⋅ )

∂f(z)
∂z

=

∂fz(x)
∂z1

⋯ ∂f1(z)
∂zd

⋯ ⋯ ⋯
∂fd(z)

∂z1
⋯

∂fd(z)
∂zd

f(z) : ℝd → ℝd

z = f −1(x)

p(x) = p( f −1(x)) det ( ∂f −1(x)
∂x ) = p(z) det ( ∂f −1(x)

∂x )
∂f −1

∂x
= ( ∂f

∂x )
−1

p(x) = p(z) det ( ∂f −1(x)
∂x ) = p(z) det ( ∂f(z)

∂z )
−1



Normalizing Flow

• Idea	
• Sample  from an “easy” distribution, e.g., standard Gaussian	
• Apply  bijections 	
• The final sample  has tractable desnity	

• Normalizing Flow	
•  where  and  is invertible	
• Every revertible function produces a normalized density function	

•
	

z0
K zi = fi(zi−1)

x = fK(zK)

z0 ∼ N(0,I ), zi = fi(zi−1), x = ZK x, zi ∈ ℝd fi

p(zi) = p(zi−1) det ( ∂fi
∂zi−1 )

−1



Normalizing Flow

• Generation is trivial	
• Sample  then apply the transformations	

• Log-likelihood	

• 	

•
	

z0

log p(x) = log p(Zk−1) − log det ( ∂fK
∂zK−1 )

log p(x) = log p(z0) − ∑
i

log det ( ∂fi
∂zi−1 ) ! "# ‼!



Normalizing Flow

• Naive flow model requires extremely expensive computation	
• Computing determinant of  matrices	

• Idea:	
• Design a good bijection  such that the determinant is easy to compute	

d × d

fi(z)



Plannar Flow

• Technical tool: Matrix Determinant Lemma:	
• 	

• Model:	
• 	
•  chosen to be 	

• 	

• Computation in  time	
• Remarks:	

•  to ensure invertibility	
• Require normalization on u and w	

det(A + uv⊤) + (1 + v⊤A−1u) det A

fθ(z) + z + u ⊙ h(w⊤z + b)
h( ⋅ ) tanh( ⋅ )(0 < h′￼( ⋅ ) < 1)

θ = [u, w, b], det ( ∂f
∂z ) = det(I + h′￼(w⊤z + b)uw⊤) = 1 + h′￼(w⊤z + b)u⊤w

O(d)

u⊤w > − 1



Planar Flow (Rezende & Mohamed, ’16)

• 	
• 10 planar transformations can transform simple distributions into a more complex 
one	

fθ(z) = z + uh (w⊤z + b)



Extensions

• Other flow models uses triangular Jacobian	
• Suppose  only depends on 	xi = fi(z) z≤i


