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Contrastive learning

Idea:	if	features	are	“semantically”	relevant,	a	“distortion”	of	an	image	should	
produce	similar	features.

Framework:	
• For	every	training	sample,	produce	multiple	augmented	samples	by	applying	
various	transformations.	

• Train	an	encoder	E	to	predict	whether	two	samples	are	augmentations	of	the	
same	base	sample.	

• A	common	way	is	train	 	big	if	 	are	two	augmentations	of	the	
same	sample:	

		

⟨E(x), E(x′ )⟩ x, x′ 

ℓx,x′ = − log ( exp(τ⟨E(x), E(x′ )⟩)
∑x̃ exp(τ⟨E(x), E(x̃)⟩) )
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Contrastive learning

Contrastive	Predictive	Coding	(Van	den	Oord	et	al.,	’18)	
• CPC:	Original	proposed	on	audio	data	
• Use	context	to	predict	futures	

• Random	negative	samples	required
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Contrastive learning

Contrastive	Predictive	Coding	(Van	den	Oord	et	al.,	’18)	
• CPCv2:	improved	version	of	CPC	on	images	with	large	scale	training	

• PixelCNN,	more	prediction	directions,	path	augmentation,	layer	normalization
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Contrastive learning

Contrastive	Predictive	Coding	(Van	den	Oord	et	al.,	’18)	
• SimCLR	(Chen	et	al.	’20)	

• A	simple	framework	for	contrastive	learning	of	visual	representations	
• Predefine	a	set	of	transformations	
• For	a	data,	sample	two	transformations	
• Maximum	agreement	on	representations	

• No	negative	pairs	explicitly	
• Non-paired	data	in	the	batch	are	negative
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Multimodal Contrastive Learning
image text
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Multimodal Contrastive Learning

choose i with Max I Ti



Multimodal Contrastive Learning



Applications of CLIP



Problems about Training CLIP
image text
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Data Filtering
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Data Filtering



Parameter-Efficient Fine-Tuning

LoRA:	Low-Rank	Adaptation	of	Large	Language	Models	
(Hu	et	al.	2021)
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Generative Models
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Distribution learning

Image	credits	to	Andrej	Risteski
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Distribution learning

Image	credits	to	Andrej	Risteski
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Distribution learning



Generative model

Slides	credit	to	Yang	Song



Generative model

Slide	credit	to	Yang	Song



Desiderata for generative models

• Probability	evaluation:	given	a	sample,	it	is	computationally	efficient	to	evaluate	
the	probability	of	this	sample.	

• Flexible	model	family:	it	is	easy	to	incorporate	any	neural	network	models.	

• Easy	sampling:	it	is	computationally	efficient	to	sample	a	data	from	the	
probabilistic	model.
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Desiderata for generative models

Slide	credit	to	Yang	Song



Taxonomy of generative models

Image	credits	to	Andrej	Risteski
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Key challenge for building generative models

Slide	credit	to	Yang	Song
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Key challenge for building generative models

Slide	credit	to	Yang	Song



Training generative models

• Likelihood-based:	maximize	the	likelihood	of	the	data	under	the	model	(possibly	
using	advanced	techniques	such	as	variational	method	or	MCMC):	

	

• Pros:	
• Easy	training:	can	just	maximize	via	SGD.	
• Evaluation:	evaluating	the	fit	of	the	model	can	be	done	by	evaluating	the	
likelihood	(on	test	data).	

• Cons:	
• Large	models	needed:	likelihood	objectve	is	hard,	to	fit	well	need	very	big	
model.	

• Likelihood	entourages	averaging:	produced	samples	tend	to	be	blurrier,	as	
likelihood	encourages	“coverage”	of	training	data.

max
θ

n

∑
i=1

log pθ(xi)



Training generative models

• Likelihood-free:	use	a	surrogate	loss	(e.g.,	GAN)	to	train	a	discriminator	to	
differentiate	real	and	generated	samples.	

• Pros:	
• Better	objective,	smaller	models	needed:	objective	itself	is	learned	-	can	
result	in	visually	better	images	with	smaller	models.	

• Cons:	
• Unstable	training:	typically	min-max	(saddle	point)	problems.	
• Evaluation:	no	way	to	evaluate	the	quality	of	fit.


