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Contrastive learning

Idea: if features are “semantically” relevant, a “distortion” of an image should
produce similar features.

Framework:

e For every training sample, produce multiple augmented samples by applying
various transformations.

e Train an encoder E to predict whether two samples are augmentations of the
same base sample.

e A common way is train (E(x), E(x")) big if x, x" are two augmentations of the
same sample:

xx — — 108 -
’ 2. exp(r(E(x), E(X)))
min 4 o

x,x’ augments of each other



Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e CPC: Original proposed on audio data
e Use context to predict futures
e Random negative samples required
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Figure from Alex Graves



Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e CPC: Original proposed on audio data
e Use context to predict futures
e Random negative samples required
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Figure 2: (-SNE visualization of audio (speech)
representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.
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Figure 3: Average accuracy of predicting the
positive sample in the contrastive loss for 1 to 20

latent steps in the future of a speech waveform.

The model predicts up to 200ms in the future as
every step consists of 10ms of audio.

Method | ACC

Phone classification
Random initialization 27.6

MFCC features 39.7
CPC 64.6
Supervised 74.6
Speaker classification

Random initialization 1.87
MECC features 17.6
CPC 974
Supervised 98.5

Table 1: LibriSpeech phone and speaker
classification results. For phone classifi-
cation there are 41 possible classes and
for speaker classification 251. All mod-
els used the same architecture and the
same audio input sizes.

Method ACC
#steps predicted

2 steps 28.5
4 steps 57.6
8 steps 63.6
12 steps 64.6
16 steps 63.8
Negative samples from

Mixed speaker 64.6
Same speaker 65.5
Mixed speaker (excl.) 57.3
Same speaker (excl.) 64.6
Current sequence only 65.2

Table 2: LibriSpeech phone classifica-
tion ablation experiments. More details
can be found in Section 3.1.



Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e CPCv2: improved version of CPC on images with large scale training
e PixelCNN, more prediction directions, path augmentation, layer normalization
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Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e CPCv2: improved version of CPC on images with large scale training
e PixelCNN, more prediction directions, path augmentation, layer normalization
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c 0.9 — ® —
5065 PY INSTANCE DISCR. [1] 24 54.0 - /0 / ox fewer
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Figure 3. Linear classification performance of new variants of CPC, CPC VI [75 I 28 48 7 73 6 2
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pacity. BU: bottom-up spatial predictions. LN: layer normalization. Al\/iDlM (9] 626 ()8”1 B 0.51 e~ ResNet trained on CPC features
RC: random color-dropping. HP: horizontal spatial predictions. N A ' " Py . ]
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Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e MoCo: Momentum Contrastive Learning (He et al., "20)

contrastive loss
A
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Figure 1. Momentum Contrast (MoCo) trains a visual represen- O, = mo; + (1 —m)f, Zi:O exp(q'kz / T)
tation encoder by matching an encoded query ¢ to a dictionary S V4
of encoded keys using a contrastive loss. The dictionary keys q k
{ko, k1, ko, ...} are defined on-the-fly by a set of data samples. Ny /
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from [ Contrastive Loss J

the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.



Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e MoCo: Momentum Contrastive Learning (He et al., "20)
e Why momentum encoder?
e Enable large and consistent buffer of negative samples
e Ensure the encoding in buffer moves slowly via momentum
e Which further ensures the feature extractor updates smoothly

contrastive loss contrastive loss contrastive loss
gradient T gradient gradient T gradient T
L qk <—\| | ' [/.—> q-k e;.‘ { l,,_> q-k <
q k q k q k
A A A A A A
encoderq encoder kK encoder Samplmg encoder momentum
* encoder
% f T memory ¢ ﬁ
bank
x? zF z? s "
(a) end-to-end (b) memory bank (c) MoCo

Figure 2. Conceptual comparison of three contrastive loss mechanisms (empirical comparisons are in Figure 3 and Table 3). Here we
illustrate one pair of query and key. The three mechanisms differ in how the keys are maintained and how the key encoder is updated.
(a): The encoders for computing the query and key representations are updated end-to-end by back-propagation (the two encoders can
be different). (b): The key representations are sampled from a memory bank [61]. (c¢): MoCo encodes the new keys on-the-fly by a
momentum-updated encoder, and maintains a queue (not illustrated in this figure) of keys.



Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e MoCo: Momentum Contrastive Learning (He et al., "20)
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Figure 3. Comparison of three contrastive loss mechanisms un-
der the ImageNet linear classification protocol. We adopt the same
pretext task (Sec. 3.3) and only vary the contrastive loss mecha-
nism (Figure 2). The number of negatives is K in memory bank
and MoCo, and is K —1 in end-to-end (offset by one because the
positive key is in the same mini-batch). The network is ResNet-50.
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Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e SimCLR (Chen et al. '20)
e A simple framework for contrastive learning of visual representations
e Predefine a set of transformations
e For a data, sample two transformations
e Maximum agreement on representations

e No negative pairs explicitly .
e Non-paired data in the batch are negative », . aximizeagreement

A A

h; <— Representation — h;




Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e SimCLR (Chen et al. '20) Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {x;}_, do
forallk € {1,...,N}do

draw two augmentation functions t ~ 7, t' ~T

# the first augmentation

Top—1 = t(zr)

hor—1 = f(@ar—1) # representation

zor—1 = g(har—1) # projection

# the second augmentation

Top = t’(wk)

hor = f(@ar) # representation
2o = g(ho) # projection
end for
foralli € {1,...,2N}andj € {1,...,2N} do
(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter) Si,j — z;l' zj /( ” z; ” ” zj ”) # pairwise similarity
end for

define (i, j) as ((i,j)=—log = exp(sij/T)

Ny L) exp(si,n/T)
L= S0 (02K —1,2k) + €(2k, 2k —1)]

update networks f and g to minimize £
() Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering end for

return encoder network f(-), and throw away g¢(-)




Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e SimCLR (Chen et al. ’20)

Label fraction

Method Architecture 1% 10%
*Supervised . % SimCLR (4x) Top 5
< 7 % SimCLR (2x Supervised baseline ResNet-50 484 804
S (2x)
- eCPCv2-L Methods using other label-propagation:
8 70b ool MoCo (4 Pseudo-label ResNet-50 51.6 824
3 %*SimCLR oCMC ¢ oCo (4x) VAT+Entropy Min. ResNet-50 470 834
s oPIRL-c2X AMDIM/' UDA (w. RandAug) ResNet-50 - 885
- 65 ? eMoCo (2x) FixMatch (w. RandAug) ResNet-50 - 89.1
L 9CPCv2 PIRL-ens. S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2
o
— PIRL R Methods using representation learning only:
3 gof §MoCo BigBIGAN InstDisc ResNet-50 392 774
< LA BigBiGAN RevNet-50 (4x) 552  78.8
S PIRL ResNet-50 572 838
£ 55 eRotation CPC v2 ResNet-161(x) 77.9 91.2
elnstDisc SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x)  83.0 91.2
25 50 100 200 400 626 SimCLR (ours) ResNet-50 (4x) 85.8  92.6

Number of Parameters (Millions)

Table 7. ImageNet accuracy of models trained with few labels.



Multimodal Contrastive Learning
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Multimodal Contrastive Learning

Loss function

Let q;; = IiTTj(normaIized

embeddings: ||I;]|2 = [|Tj[|2 = 1),
loss; + losst

loss =

where,

loss; =

losst =

2

exp(q;;)

‘]

Pepper the
aussie pup

N
— Z log
i=1
N
— z log
j=1

2. exp(q;j)

exp(q;j;j)

2. exp(q;;)

'y

—
—
—

Image W

Y

Y

Encoder

Y

Y

T T T T
Il.Tl Il.TZ II'T3 IlTN
LTy | LTy  IrTs L Tx
I3T; | 13T, | 13T I3 Ty
INTl INT2 INT3 INTN




Multimodal Contrastive Learning

Zero-Shot Classification:
* Generate a prompt for
each class

A photo of

a {object}.

\\\\;;;:\\\l
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Image
Encoder
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A photo of
a dog.
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Multimodal Contrastive Learning

75
Linear Probe CLI
Results 20-
Strong zero-shot and few-shot 05 'ifalsphot BIT-M (ImageNet-21K
performance compared with 5 60 STMCLRV2
other models. e, )
2 cs
Zero-shot performance on 7
ImageNet: CLIP = fully g 207
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Applications of CLIP

Image Generation
(StyleCLIP [Patashnik et al. 2021]) |

“Without makeup” “Cute cat” “Gothic church”

-~
Y
N

“pack the yoshi figure “pack all the blue and black sneaker
in the brown box” objects in the brown box”

“Emma Stone”

“Mohawk hairstyle”

Robotics -

(CLIPort [Shridhar et al. 2021])




Problems about Training CLIP

Require large amount of carefully curated image-text pairs
4 Billion closed-source data used for OpenAl’s CLIP

e How to obtain lots of high-quality data?

One choice: Web-curated data pairs + data filtering



DataComp

Training Process:

Evaluation: -
38 Zero-shot downstream tasks - B

A benchmark standardize the training configuration

ImageNet v2 ImageNet-A ImageNet-O ImageNet-R

2 I e L

MNIST MSCOCO ObjectNet  Oxford-II'T Pet  Pascal VOC
quality data pairs =
Train a CLIP model with a fixed ﬂ E u m
architecture and hyperparameters ,..c..eyon resscs  ssr 10 sunsss
Fix total number of training data '
seen (1 pass of 4B data = 4 passes Ry
of 1B data) SVHN  Stonford Cars  UTKFace  WinoGAVIL  iWldCam

Filtering data from a pool of low-




Data Filtering

Distribution-agnostic methods

Image-based filtering

* Cluster the image embeddings (from a pre-trained CLIP model) of
training data, and select the groups that contain at least one
embedding from ImageNet-1k

CLIP score filtering
* Filter the data with low CLIP similarity assigned by a pre-trained
CLIP model.

[ CLIP score = ﬁ};ageftext J




Data Filtering

Setup:

Total number of training sample seen =12.8M

Filterine Strate Dataset ImageNet ImageNet Dist. Shift VTAB Retrieval Average
g gy Size (1 sub-task) (5) (11) 3) (38)
No filtering 12.8M 2.5 3.3 14.5 10.5 13.2
ICLIP score (30%, reproduced) 3.8M 4.8 5.3 17.1 11.5 158 |
Image-based M CLIP score (45%) 1.9M 4.2 4.6 17.4 10.8 15.5
D? Pruning (image+text, reproduced) 3.8M 4.6 5.2 18.5 11.1 16.1
CLIP score (45%) 5.8M 4.5 5.1 17.9 12.3 16.1 |

Filtering significantly improves the performance!



Parameter-Efficient Fine-Tuning

LoRA: Low-Rank Adaptation of Large Language Models
(Hu et al. 2021)

h |

ZN
Pretrained
Weights

W € Rdxd

X |

Figure 1: Our reparametriza-
tion. We only train A and B.



Generative Models




Distribution learning

Training Model Samples (Karras et.al.,
Data(CelebA) 2018)

4 years of progression on Faces

Brundage et al.,
2017

2014 2015 2016 2017

Image credits to Andrej Risteski



Distribution learning

N, Brock et al ‘18

BigGA



Distribution learning

Conditional generative model P(zebra images| horse images)

Input Image Monet Van Gogh

Image credits to Andrej Risteski



Distribution learning

Source Real-time Reenactmen
actor

Real-time
reenactment

Reenactment Result




Generative model

Generate
— % =3

Generative model
of realistic images

—

Stroke paintings to realistic images
[Meng, He, Song, et al., ICLR 2022]

(e Generate

“Ace of Pentacles” === \ —

Generative model T ol
of paintings Language-guided artwork creation
https://chainbreakers.kath.io @RiversHaveWings

Slides credit to Yang Song



Generative model

High P Low
probability probability
— y

Generative model
of traffic signs

Outlier detection
[Song et al., ICLR 2018]

Slide credit to Yang Song



Desiderata for generative models

e Probability evaluation: given a sample, it is computationally efficient to evaluate
the probability of this sample.

¢ Flexible model family: it is easy to incorporate any neural network models.

e Easy sampling: it is computationally efficient to sample a data from the
probabilistic model.



Desiderata for generative models

Data distribution
(unknown)

High Low_ |
probability  Probability

Generative model

Novel data points

Sampling &N;I m
’ﬂ' 8-

Slide credit to Yang Song



Taxonomy of generative models

Direct

Generative models

/\

Explicit density

Implicit density

T

Tractable density

GAN

\

Approximate density

Fully Visible Belief Nets

NADE
MADE
PixelRNN/CNN

Change of variables
models:

(Nonlinear) ICA

- Normalizing flows

Markov Chain

L

Variational

Markov Chain

Variational Autoencoder

Energy models

GSN

(Restricted) Boltzmann machines

Image credits to Andrej Risteski




Key challenge for building generative models

e.f@ (X)

?-;: = pe(x)M

\_w -t

Normalizing constant

Slide credit to Yang Song



Key challenge for building generative models

Approximating the normalizing constant

* Variational auto-encoders [kingma & Welling 2014, Inaccurate probability
Rezende et al. 2014] evaluation
* Energy-based models [ackiey et al. 1985, LeCun et

al. 2006]

Using restricted neural network models

° Autoregressive models [Bengio & Bengio 2000, van Restricted model
den Oord et al. 2016] fam”y
* Normalizing flow models [pinh et al. 2014,

Rezende & Mohamed 2015]

- Model the generation process, not the Cannot evaluate

Generative adversarial networks (GANs) 6
probability distribution (coodteliow et al. 2014]

probabilities

Slide credit to Yang Song



Training generative models

e Likelihood-based: maximize the likelihood of the data under the model (possibly
using advanced techniques such as variational method or MCMC):

max lo X;
p le gpe( l)

® Pros:
e Easy training: can just maximize via SGD.
¢ Evaluation: evaluating the fit of the model can be done by evaluating the
likelihood (on test data).

e Cons:
e Large models needed: likelihood objectve is hard, to fit well need very big
model.
e Likelihood entourages averaging: produced samples tend to be blurrier, as
likelihood encourages “coverage” of training data.



Training generative models

e Likelihood-free: use a surrogate loss (e.g., GAN) to train a discriminator to
differentiate real and generated samples.

® Pros:
e Better objective, smaller models needed: objective itself is learned - can
result in visually better images with smaller models.

e Cons:
e Unstable training: typically min-max (saddle point) problems.
¢ Evaluation: no way to evaluate the quality of fit.



