Representation Learning
Pre-training
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Example in image representation

Image
Representation

input layer hidden layer 1 hidden layer 2 hidden layer 3

Train a neural network (ResNet) on
ImageNet (1M data, 1000 classes)

output layer

) Cat Representation (feature extractor):
The mapping from image to the
second-to-the-last layer.

input layer niaaen 1ayer 1 hidden layer 2 niaaen iayg

) Dog Fixthe representation, just re-train
the last linear layer.

@

@

New linear
classifier



Example in image representation

input layer hidden layer 1 hidden layer 2 hidden layer 3

Source tasks
(for training — A

representation): . Re® BRI i

ImageNet

Target task: e Without representation learning:

Few-shot Learning

on VOCO07 dataset M*

* With representation learning:
(20 classes, 1-8 il 50% - 80%
examples per class)

5% - 10% (random guess = 5%)



Example in image representation

input layer hidden layer 1 hidden layer 2 hidden layer 3

Source tasks
(for training — A

representation): . Re® BRI i

ImageNet

Target task: e Without representation learning:

Few-shot Learning

on VOCO07 dataset M*

* With representation learning:
(20 classes, 1-8 il 50% - 80%
examples per class)

5% - 10% (random guess = 5%)



Examples

Final hidden state:
Sentence representation
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Representation learning

e A function that maps the raw input to a compact representation (feature vector).
Learn an embedding / feature / representation from labeled/unlabeled data.

e Supervised:

e Multi-task learning

e Meta-learning

e Multi-modal learning

L4 cee
e Unsupervised:

e PCA

e ICA

e Dictionary learning

e Sparse coding

e Boltzmann machine

e Autoencoder

e Contrastive learning

e Self-supervised learning



Desiderata for representations

Many possible answers here.
e Downstream usability: the learned features are “useful” for downstream tasks:

e Example: a linear (or simple) classifier applied on the learned features only
requires a small number of labeled samples. A classifier on raw inputs

requires a large mount of data.

¢ Interpretability: the learned features are semantically meaningful, interpretable

by a human, can be easily evaluated.
e Not well-defined mathematically.
e Sparsity is an important subcase.



Desiderata for representations

From Bengio, Courville, Vincent '14:
e Hierarchy / compositionality: video/image/text are expected to have hierarchial

structure: need deep learning.

e Semantic clusterability: features of the same “semantic class” (e.g. images in the
same class) are clustered together.

e Linear interpolation: in the representation space, linear interpolations produce
meaningful data points (latent space is convex). Also called manifold flattening.

e Disentanglement: features capture “independent factors of variation” of data. A
popular principle in modern unsupervised learning.



Semantic clustering

Semantic clusterability: features of the same “semantic class” (e.g. images in the
same class) are clustered together.

Latent Variable T-SNE per Class

75 A

50 A ol ® .
Intuition: If semantic classes are

linearly separable, and labels on
downstreams tasks depend
linearly on semantic classes: we
only need to learn a simple
classifer.

25 A

—;5 —éO —2'5 6 2'5 5'0 7'5 100
t-SNE projection (a data visualization method) of VAE-learned
features of 10 MNIST classes.



Linear interpolation

Linear interpolation: in the representation space, linear interpolations produce
meaningful data points (latent space is convex).

Intuition: the data lies on a
manifold which is complicated/
curved.

2222223233333 The latent variable manifold is a

convex set: moving in straight

LR RER] s is still on it.

Interpolations for a VAE trained feature on MNIST.



Linear interpolation

Linear interpolation: in the representation space, linear interpolations produce
meaningful data points (latent space is convex).

Interpolations for a BigGAN image.



Disentanglement

Disentanglement: features capture “independent factors of variation” of data
(Bengio, Courville, Vincent '14).

e Very popular in modern unsupervised learning.

e Strong connections with generative models: py(z) = I1.py(z)).

Figure 4: Latent factors learnt by 3-VAE on celebA: traversal of individual latents demonstrates
that 3-VAE discovered in an unsupervised manner factors that encode skin colour, transition from an
elderly male to younger female, and image saturation.



Representation
Learning Methods




Word embeddings, word2vec

Can we embed words
into a latent space?

This embedding came from
directly querying for
relationships.

word2vec is a popular
unsupervised learning
approach that just uses a text
corpus (e.g. nytimes.com)
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http://nytimes.com

Word embeddings, word2vec

Training
Samples

Source Text

-quick brown |fox jumps over the lazy dog. == (the, quick)
(the, brown)

The brown |fox|jumps over the lazy dog. == (quick, the)
(quick, brown)
(quick, fox)

The quick-fox jumps|over the lazy dog. == (brown, the)
(brown, quick)

(brown, fox)

(brown, jumps)

The|quick brown-jumps over|the lazy dog. = (fox, quick)
(fox, brown)

(fox, jumps)

(fox, over)

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



Word embeddings, word2vec

Output Layer
Softmax Classifier

H Idden Layer Probability that the word at a

Linear Neurons : —— randomly chosen, nearby
Input Vector position is “abandon”

X
= .. “ability”

10,000
positions 3
300 neurons —— .."“zone”

10,000
neurons

S S\
A ‘1’ in the position

corresponding to the
word “ants”

[e[o=[o]e]o]o]o]o]

(2]

Training neural network to predict co-occuring words. Use first layer weights as
embedding, throw out output layer

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



Word embeddings, word2vec

Output weights for “car”

softmax

eTants,Year) Probability that if you

: Z o{Tants Yi) = randomly pick a word
i

Word vector for “ants”

T X

300 features

nearby “ants”, that it is “car”

300 features

Training neural network to predict co-occuring words. Use first layer weights as
embedding, throw out output layer

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



Self-supervised learning

» Predict any part of the input from any Time -
other part. ’ ]
» Predict the from the past.
y
» Predict the from the recent past. \

» Predict the from the present. | ‘

» Predict the from the bottom.

y |

» Predict the occluded from the visible | / :
» Pretend there is a part of the input you « Past Plagsnt Future —

don’t know and predict that. Slide: LeCun



Transformer Pretraining

e Collect a large amount of corpus (wiki) and pretrain a large transformer

e For down-stream tasks, fine-tune the pretrained model
e Or use the pretrained model to extract features

e How to pretrain a transformer on texts?
e Pretrain an encoder
¢ bi-directional

Encoders
e Pretrain a decoder

e auto-regressive

L 222271 Decoders



Pre-training Transformer Encoder

e Pre-training a bi-directional encoder
e Cannot directly adopt language modeling
¢ |dea: word prediction given contexts (similar to word2vec)

e Masked language model
e Randomly “masked out” some words
e Run full transformer encoder went store
e Predict the words at masked positions I

e Designed for feature extraction
e Suitable for down-stream tasks

| [M] to the [M]



Pre-training Transformer Encoder

e BERT: Pre-training of Deep Bidirectional Transformers

e Devlin et al., Google, 2018
e BERT-base: 12 layers, 110M params
° BEI?TTIarge: 24 Iayers', 340M params [Predict these!] went to store
® Training on 64 TPUs in 4 days 4 4 4
e Fine-tuning can be down in a single GPU

Transformer
e Masked language model Encoder
e Masked out input words 80% of the time | | | | |
* Replace 10% words with random tokens | pizza to the [M]
e 10% words remain unchanged
e Predict 15% of word tokens / I

[Replaced] [Not replaced] [Masked]



Pre-training Transformer Encoder

e BERT: Pre-training of Deep Bidirectional Transformers

e Devlin et al., Google, 2018
e BERT-base: 12 layers, 110M params
° BEI?TTIarge: 24 Iayers', 340M params [Predict these!] went to store
® Training on 64 TPUs in 4 days 4 4 4
e Fine-tuning can be down in a single GPU

Transformer

e Masked language model Encoder

e Masked out input words 80% of the time | | | | |

* Replace 10% words with random tokens | pizza to the [M]

e 10% words remain unchanged / t t
System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B  MRPC RTE Average

392k 363k 108k 67k 8.5k 5.7k 35k 2.5k -

Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 35.0 81.0 860  61.7 74.0
BiLSTM+ELMo+Attn  76.4/76.1 648 798 904  36.0 73.3 849 5658 71.0
OpenAl GPT 82.1/81.4 703 874 913 454 80.0 823  56.0 75.1
BERTsaAsE 84.6/83.4 712 905 935 52.1 85.8 889  66.4 79.6

BERT | arGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1




Pre-training Transformer Encoder

e BERT: Pre-training of Deep Bidirectional Transformers

e RoBERTa: A robustly optimized BERT Pretraining approach
e Facebook Al and UW, '19
e More compute, data, and improved objective

SQuAD

(v1.1/2.0) MNLI-m SST-2

Model data bsz steps

RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 953
+ additional data (33.2) 160GB 8K 100K 94.0/87.7 89.3 95.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERT  arce

with BOOKS + WIKI 1I3GB 256 1M  90.9/81.8 86.6 93.7



Pre-training Decoder

e Decoder Pretraining
e Just train a language model over corpus.
e Good for generative task (e.g., text generation)

e Generative Pretrained Transformer (GPT, Open Al '18)
e 120 layers transformer, 7680d hidden, 3072-d MLP
e Data: BooksCropus (>7k books)

e GPT-2 (Radford et al., OpenAl '19)
e 1.5B parameters, 40GB internet texts

Wy W3 Wyq Wg Wg

e GPT-3 (OpenAl ’20)
e Language models are few-shot learners
e 175B parameters

e Also Image GPT (OpenAl '20) Wi W, Wz W, Ws



Pre-training Decoder

e GPT-3 (OpenAl ’20)
e You may not need to fine-tune the model parameters for downstrea mtasks.
e New paradigm: prompt learning

Few-shot

In addition to the task description, the model sees a few

examples of the task. No gradient updates are performed. v ,
Code: px.line(df.query("continent == 'Europe' and country == 'France'"), x='year',
y="gdpPercap', color='country', log_y=False, log_x=False)

Translate English to French: task description  pescription: Actually, replace GDP with population

sea otter => loutre de mer examples Code: px.line(df.query("continent == 'Europe' and country == 'France'"), x='year',
y="pop', color="country', log_y=False, log_x=False)

peppermint => menthe poivrée o )
Description: Put y-axis on log scale

h girafe => gir h v .
plus girate g1 afe peluc € Code: px.line(df.query("continent == 'Europe' and country == 'France'"), x='year',

='pop', color='country', log_y=True, log_x=False
cheese => prompt Y= Por y g_y g )



Pre-training Decoder

e A big ongoing race on training large language models
e Megatron-Turing NLG (530B, Microsoft, '22)
e Pathways Language Model (540B, Google, '22

1000 e

GPT-3(1758)

& Megatron-Turing NLG (530B)

o
=)
=]

Megatron-LM (8.3B) TRt
uring-| 5

[
5]

8

[

~GPT-2 (1.5B)

Model Size (in billions of parameters)

- BERT-Large (340M)

)
b

“ELMo (94M)

0.01
2018 2019 2020 2021 2022

LOGICAL INFERENCE CHAINS

SEMANTIC PARSING COMMON-SENSE REASONING

PROVERBS PATTERN RECOGNITIOI
ARITHMETIC TRANSLATION
'DE COMPLETION DIALOGUE

' JOKE EXPLANATIO|
READING COMPREHENSION pHYSICS QA

SUMMARIZATION LANGUAGE UNDERSTANDING

540 billion parameters



Autoencoders

Find a low dimensional representation for your data by predicting your data

Input:
T E Rd Encoder

minimize 2?21 |x; — g(f(x:)||5

19

Code:

f(x) e R"

Decoder

2

Output:

z=g(f(z)) € R?



Autoencoders

minfir;lize Z?:l |zi — g(f(x:))]]5

What if f(X) = Az and g(y) = By?



Autoencoders

minfir;lize Z?:l |zi — g(f(x:))]]5

What if f(X) = Az and g(y) = By?



Self-supervised learning in computer vision

Context Prediction (Pathak et al., ‘15)

Question 2:

Question 1:

Figure 1. Our task for learning patch representations involves ran-
domly sampling a patch (blue) and then one of eight possible
neighbors (red). Can you guess the spatial configuration for the
two pairs of patches? Note that the task is much easier once you
have recognized the object!

19uad dog, 70O S wonog 10 L3y Jomsuy

ety
LA T T
fc9 (8) \f".'D!"'E
fc8 (4096) e
P . St bt haet
| fc7 (4096) |
3 E__3
76 (4096)  F----—-——1 Tc6 (4096)
pool5 (3x3,256,2) pool5 (3x3,256,2)
conv5 (3x3,256,1) f-=-=-=--=--1 conv5 (3x3,256,1)
conv4 (3x3,384,1) f------—-1 conv4 (3x3,384,1)
conv3(3x3,384,1) p----—--——1 conv3 (3x3,384,1)
LRN2 LRN2
pool2 (3x3,384,2) pool2 (3x3,384,2)
conv2 (5x5,384,2) p----—-——1 conv2 (5x5,384,2)
LRN1 LRN1
pooll (3x3,96,2) pooll (3x3,96,2)
convl (11x11,96,4)p ----—-—-——1 convl (11x11,96,4)
-9 e



Self-supervised learning in computer vision

e Feature learning by Inpainting (Pathak et al., '16)
e The most obvious analogue to word embeddings: predict parts of image
from the remainder of image

)

A Architectures:

e (. ) An encoder takes a part of an image,

constructs a representation.

Channel-wise
Fully

Encoder
: Connected

[ Encoder Fealures ]

Decoder Features

A decoder takes the representation,
tries to reconstruct the missing part.

Figure 2: Context Encoder. The context image is passed
through the encoder to obtain features which are connected
to the decoder using channel-wise fully-connected layer as
described in Section 3.1. The decoder then produces the
missing regions in the image.

Trickier than NLP:
1. Meaningful losses for vision are more difficult to design.
2. Choice of region to mask out is important



Self-supervised learning in computer vision

e Feature learning by Inpainting (Pathak et al., '16)

(c) Context Encoder (d) Context Encoder
(L2 loss) (L2 + Adversarial loss)

L, vs. Adversarial loss



Self-supervised learning in computer vision

e Feature learning by Inpainting (Pathak et al., '16)

(a) Central region (b) Random block (c) Random region

Figure 3: An example of image = with our different region
masks M applied, as described in Section 3.3.

Fixed region vs. random square block vs. random region



Self-supervised learning in computer vision

e Image Colorization (Zhang et al. ’16)

Input Image X




Self-supervised learning in computer vision

e Rotation Prediction (Gidaris et al., ’18)

h | Objectives: L
4 - v " |
(D 9 ConvNet » Maximize prob.
—» g(X,y=0) —» | model F() ) F(x°) |
90° rotation 270° rotation 180° rotation 0° rotation 270° rotation Rotate 0 degrees o | Predict (; deorees rohtionr(\=0)

. ’ . ] 'y "
Figure 1: Images rotated by random multiples of 90 degrees (e.g., 0, 90, 180, or 270 degrees). The Rotated image: ¥ |
core intuition of our self-supervised feature learning approach is that if someone is not aware of the |
concepts of the objects depicted in the images, he cannot recognize the rotation that was applied to ) |
them. e

» ;= 2N p» ConvNet 7 | p Maximize prob.
g' 2. y =1) | model F() | FI‘XI) |

Rotate 90 degrees ) Predict 90 degrees rotation (y=1) |
Rotated image: X |

_ g ConvNet Maximize prob.
> g X y=2) R nodelFO) | ] T F(x°) |
Image X Rotate 180 degrees , - | Predict 180 degrees rotation (y=2) |
Rotated image: X~ . |
e ‘ f - ConvNet p Maximize prob. |
—» g(X,y=3) A3 model F() F(x) |
Rotate 270 degrees o | Predict 270 degrees rotation (y=3)

Rotated image: X°

- - — — — 1

Convl 27 x 27 Conv313 x 13  ConvS6 x 6 Convl 27 x 27 Conv313 x 13 Conv56 x 6

(a) Attention maps of supervised model (b) Attention maps of our self-supervised model



Contrastive learning

Idea: if features are “semantically” relevant, a “distortion” of an image should
produce similar features.

Framework:

e For every training sample, produce multiple augmented samples by applying
various transformations.

e Train an encoder E to predict whether two samples are augmentations of the
same base sample.

e A common way is train (E(x), E(x")) big if x, x" are two augmentations of the

same sample:

PR exp(t{E(x), E(x")))
X,X g ch exp(z(E(x), E(X)))

min Z Crx

x,x’ augments of each other



Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e CPC: Original proposed on audio data
e Use context to predict futures
e Random negative samples required

Ct Predictions
Il ) = T W
\_\ \ \,\ -\_\ k $t+k, Ct) = eXp Zt+k kCt
k \ X y

2t 2t+1 2t+2 2t+3 Zt+4 fk ( xt-}-ka Ct)
EN:—% logz f(mc)
/genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ Z 4 eX k Jr ¢t

| Tt-3 | Tg-2 | Tg-1 | Tr | Teq Tt42 Tt43 Tt44

s =0 s i e

Figure from Alex Graves



Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e CPC: Original proposed on audio data
e Use context to predict futures
e Random negative samples required

Y e s i
SR b et sl
i R, ad
gy T ¥
(¥ 2

Figure 2: (-SNE visualization of audio (speech)
representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.

1.0
0.8 i)
0.6
0.4

0.2 beveieeiann

0.0 : : :
0 5 10 15 20

Figure 3: Average accuracy of predicting the
positive sample in the contrastive loss for 1 to 20

latent steps in the future of a speech waveform.

The model predicts up to 200ms in the future as
every step consists of 10ms of audio.

Method | ACC

Phone classification
Random initialization 27.6

MFCC features 39.7
CPC 64.6
Supervised 74.6
Speaker classification

Random initialization 1.87
MECC features 17.6
CPC 974
Supervised 98.5

Table 1: LibriSpeech phone and speaker
classification results. For phone classifi-
cation there are 41 possible classes and
for speaker classification 251. All mod-
els used the same architecture and the
same audio input sizes.

Method ACC
#steps predicted

2 steps 28.5
4 steps 57.6
8 steps 63.6
12 steps 64.6
16 steps 63.8
Negative samples from

Mixed speaker 64.6
Same speaker 65.5
Mixed speaker (excl.) 57.3
Same speaker (excl.) 64.6
Current sequence only 65.2

Table 2: LibriSpeech phone classifica-
tion ablation experiments. More details
can be found in Section 3.1.



Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e CPCv2: improved version of CPC on images with large scale training
e PixelCNN, more prediction directions, path augmentation, layer normalization

Self-supervised [256. 256. 3] Rm1 [7.7.4006] mﬁi [7.7.4008] RN

re-trainin InfoNCE
whmmomes T : — -

g: output
g utput | Pre-trained Fixed
- - - ) - X [256,256.3] Patched ResNet-161 [7.7, 4006] Linear (1000, 1 ‘\
17 —TC¢ Linear classification _,_. E )
= [ i | o< — [l : — B T\
o T Pre-trained
) - A Fixed / Tuned
64 px - R - . peaz ReeNet-181  [14.14,4008]  ReeNet-33 11000, 1]
Zt4o| |- -7/ Efficient classification _,—.
= 4 .~ 2 o g 1% to 100% images and labels ——lI'—ﬁ —>-—.
Zt43] || -7 Predictions
Z / -1 - Pre-trained
i 0 Fixed / Tu wed
H.W.3] .4006] Faster-RCNN

50% overlap
256 px:
v input image

—— T

Transfer learning A
100% images and labeis —»lIl—. _.-_. Tosk )

. .. [24.224.3] .
Supervised training 1
1% to 100% images and labels X h‘ >y Ent )

uonen|eAs Bujuen-aid

auljeseg



Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e CPCv2: improved version of CPC on images with large scale training
e PixelCNN, more prediction directions, path augmentation, layer normalization

3 METHOD PARAMS (M) Top-1  Top-5
)
5 07 o—
o () e /'
& ) Methods using ResNet-50: ./. o
c 0.9 — ® —
5065 PY INSTANCE DISCR. [1] 24 54.0 - /0 / ox fewer
g ® LocAL AGGR. [2] 24 58.8 - z s ® labels
% 05 ° MoCo [3] 24 60.6 - Sosd
s ° PIRL [4] 24 63.6 - 8 *—
o © 5x fewer ¢
S 055 CPC v2 - RESNET-50 24 63.8 85.3 1S labels
5 @] .8 0.71
CPC V1 CPCv2 Methods using different architectures: 2
#MC +BU +LN +RC +HP +LP +PA MULTI-TASK [5] 28 - 69.3 S 0.6- o
. ROTATION [6 86 55.4 - by
Figure 3. Linear classification performance of new variants of CPC, CPC VI [75 I 28 48 7 73 6 2
which incrementally add a series of modifications. MC: model ca- BICBIGAN (8] 86 61 .2 8»1 '9 =
pacity. BU: bottom-up spatial predictions. LN: layer normalization. Al\/iDlM (9] 626 ()8”1 B 0.51 e~ ResNet trained on CPC features
RC: random color-dropping. HP: horizontal spatial predictions. N A ' " Py . ]
LP: larger patches. PA: further patch-based augmentation. Note §4I\(/)l€(! llgl] l?f 232 88.2 =e- ResNet trained on raw pixels
that these accuracies are evaluated on a custom validation set and - S i _ 0.4 1 5 é 1'0 2'0 5'0 160
are therefore not directly comparable to the results we reporton  CPC v2 - RESNET-161 305 71.5 90.1

Percentage of labeled data

the official validation set.



Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e MoCo: Momentum Contrastive Learning (He et al., '20)

contrastive loss
A

R similarity «‘
q S A N
q ko Ky ko ... o
A queue A / \
0,
momentum q Ok
encoder encoder l 1
A
Encoder Momentum Encoder E
auery Igey ;l‘ll(ey ;r.‘;ey o s ] exp(q k+/ T)
q=fylo,) k= falo) ﬁq I Og K
JO,\"q 2
Figure 1. Momentum Contrast (MoCo) trains a visual represen- O, = mo; + (1 —m)f, Zi:O exp(q'kz / T)
tation encoder by matching an encoded query ¢ to a dictionary S V4
of encoded keys using a contrastive loss. The dictionary keys q k
{ko, k1, ko, ...} are defined on-the-fly by a set of data samples. Ny /
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from [ Contrastive Loss J

the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.



Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e MoCo: Momentum Contrastive Learning (He et al., '20)
e Why momentum encoder?
e Enable large and consistent buffer of negative samples
e Ensure the encoding in buffer moves slowly via momentum
e Which further ensures the feature extractor updates smoothly

contrastive loss contrastive loss contrastive loss
gradient T gradient gradient T gradient T
q k q k q k
A A 4 A A t
encoder g encoder k encoder Sam:Iing encoder m::wue)gt:rm
A A A memory A A
x? zF x? pan x? zF
(a) end-to-end (b) memory bank (c) MoCo

Figure 2. Conceptual comparison of three contrastive loss mechanisms (empirical comparisons are in Figure 3 and Table 3). Here we
illustrate one pair of query and key. The three mechanisms differ in how the keys are maintained and how the key encoder is updated.
(a): The encoders for computing the query and key representations are updated end-to-end by back-propagation (the two encoders can
be different). (b): The key representations are sampled from a memory bank [61]. (c¢): MoCo encodes the new keys on-the-fly by a
momentum-updated encoder, and maintains a queue (not illustrated in this figure) of keys.



Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e MoCo: Momentum Contrastive Learning (He et al., '20)
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Figure 3. Comparison of three contrastive loss mechanisms un-
der the ImageNet linear classification protocol. We adopt the same
pretext task (Sec. 3.3) and only vary the contrastive loss mecha-
nism (Figure 2). The number of negatives is K in memory bank
and MoCo, and is K —1 in end-to-end (offset by one because the
positive key is in the same mini-batch). The network is ResNet-50.
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Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e SImMCLR (Chen et al. ’20)

e A simple framework for contrastive learning of visual representations
e Predefine a set of transformations
e For a data, sample two transformations
e Maximum agreement on representations

e No negative pairs explicitly
e Non-paired data in the batch are negative , _  Maximize agreement
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Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e SimCLR (Chen et al. '20)

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {x;}_, do
forallk € {1,...,N}do

draw two augmentation functions t ~ 7, t' ~T

# the first augmentation

Top—1 = t(zr)

hor—1 = f(@ar—1) # representation

zor—1 = g(har—1) # projection

# the second augmentation

Top = t’(wk)

hor = f(@ar) # representation
2o = g(ho) # projection
end for
foralli € {1,...,2N}andj € {1,...,2N} do
(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter) Si,j — z;l' zj /( ” z; ” ” zj ”) # pairwise similarity
end for

define (i, j) as ((i,j)=—log = exp(sij/T)

Ny L) exp(si,n/T)
L= S0 (02K —1,2k) + €(2k, 2k —1)]

update networks f and g to minimize £
() Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering end for

return encoder network f(-), and throw away g¢(-)




Contrastive learning

Contrastive Predictive Coding (Van den Oord et al., "18)
e SimCLR (Chen et al. ’20)

Label fraction

Method Architecture 1% 10%
*Supervised . % SimCLR (4x) Top 5
< 7 % SimCLR (2x Supervised baseline ResNet-50 484 804
S (2x)
- eCPCv2-L Methods using other label-propagation:
8 70b ool MoCo (4 Pseudo-label ResNet-50 51.6 824
3 %*SimCLR oCMC ¢ oCo (4x) VAT+Entropy Min. ResNet-50 470 834
s oPIRL-c2X AMDIM/' UDA (w. RandAug) ResNet-50 - 885
- 65 ? eMoCo (2x) FixMatch (w. RandAug) ResNet-50 - 89.1
L 9CPCv2 PIRL-ens. S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2
o
— PIRL R Methods using representation learning only:
3 gof §MoCo BigBIGAN InstDisc ResNet-50 392 774
< LA BigBiGAN RevNet-50 (4x) 552  78.8
S PIRL ResNet-50 572 838
£ 55 eRotation CPC v2 ResNet-161(x) 77.9 91.2
elnstDisc SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x)  83.0 91.2
25 50 100 200 400 626 SimCLR (ours) ResNet-50 (4x) 85.8  92.6

Number of Parameters (Millions)

Table 7. ImageNet accuracy of models trained with few labels.



Parameter-Efficient Fine-Tuning

LoRA: Low-Rank Adaptation of Large Language Models
(Hu et al. 2021)
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Figure 1: Our reparametriza-
tion. We only train A and B.



