
Attention Mechanism

Machine Translation

• Before 2014: Statistical Machine Translation (SMT)
• Extremely complex systems that require massive human efforts
• Separately designed components
• A lot of feature engineering
• Lots of linguistic domain knowledge and expertise

• Before 2016:
• Google Translate is based on statistical machine learning

• What happened in 2014?
• Neural machine translation (NMT)

Sequence to Sequence Model

• Neural Machine Translation (NMT)
• Learning to translate via a single end-to-end neural network.
• Source language sentence , target language sentence

• Sequence to Sequence Model (Seq2Seq, Sutskever et al. , ‘14)
• Two RNNs: and
• Encoder :

• Takes as input, and output the initial hidden state for decoder
• Can use bidirectional RNN

• Decoder :
• It takes in the hidden state from to generate
• Can use autoregressive language model

X Y = f(X; θ)

fenc fdec
fenc
X

fdec
fenc Y

Jens X information of

tree teni x y

Sequence to Sequence Model
each word one botento

A
cqybi

directional probof
allword

17 7

h t
Xt

Xt Xo 1 40

Training Sequence to Sequence Model

• Collect a huge paired dataset and train it end-to-end via BPTT
• Loss induced by MLE P(Y |X) = P(Y | fenc(X)) source laugue

sentence

tangent Goudt

Deep Sequence to Sequence Model

• Stacked seq2seq model

Machine Translation

• 2016: Google switched Google Translate from SMT to NMT

Alignment

• Alignment: the word-level correspondence between X and Y
• Can have complex long-term dependencies

Issue in Seq2Seq

• Alignment: the word-level correspondence between X and Y
• The information bottleneck due to the hidden state
• We want each to also focus on some that it is aligned with

h
Yt Xi

Seq2Seq with Attention

• NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, ’15)
• Core idea:

• When decoding , consider both hidden states and alignment:
• Hidden state:
• Alignment: connect to a portion of

• When portion of to focus on?
• Learn a softmax weight over : attention distribution
• : how much attention to put on word

• Attention output

• Use and to compute

Yt
ht = fdec(Yi<t)

X
X

X Patt
Patt(Xi |ht) Xi

hatt = ∑
i

fenc(Xi |Xj<i) ⋅ Patt(Xi |ht−1)

ht−1 hatt Yt

TEL
tenixillici E2

e
Tais

yeetchtiha.tt

Seq2Seq with Attention

no

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

in iii In.at

n.EEfEi
ñ ñ T

Seq2Seq with Attention
Gatt 0

he

Seq2Seq with Attention
halt 0 Wz6 Wih.tw hattiot b

to

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Summary
• Input sequence , encoder , and decoder
• produces hidden states
• On time step , we have decoder hidden state

• Compute attention score
• Compute attention distribution

• Attention output:

•
• Sample an output using both and

X fenc fdec
fenc(X) henc

1 , henc
2 , …, henc

N
t ht

ei = h⊤
t henc

i
αi = Patt(Xi) = so_max(ei)

henc
att = ∑

i
αihenc

i

Yt ∼ g(ht, henc
att ; θ)

ht henc
att

Attention

• It significantly improves NMT.
• It solves the bottleneck problem and the long-term dependency issue.
• Also helps gradient vanishing problem.
• Provides some interpretability

• Understanding which word the RNN encoder focuses on

• Attention is a general technique
• Given a set of vector values and vector query
• Attention computes a weighted sum of values depending on

Other use cases:
• Attention can be viewed as a module.
• In encoder and decoder (more on this later)
• A representation of a set of points

• Pointer network (Vinyals, Forunato, Jaitly ’15)
• Deep Sets (Zaheer et al., ’17)

• Convolutional neural networks
• To include non-local information in CNN (Non-local network, ’18)

Vi q
q

Attention

• Representation learning:
• A method to obtain a fixed representation corresponding to a query from

an arbitrary set of representations
• Attention distribution:

• Attention output:

• Attent variant:

• Multiplicative attention: , is a weight matrix

• Additive attention:

q
{Vi}

αi = so_max(f(vi, q))
vatt = ∑

i
αivi

f(vi, q)
f(vi, q) = q⊤Whi W

f(vi, q) = u⊤tanh(W1vi + W2q)

4th

Key-query-value attention

• Obtain from

• ; ; (position encoding omitted)

• are learnable weight matrices

•

• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = so_max(q⊤
i kj); outi = ∑

k
αi, jvj

heth save Tahi

Attention is all you need (Vsawani ’17)

• A pure attention-based architecture for sequence modeling
• No RNN at all!

• Basic component: self-attention,
• uses attention on entire sequence
• computed from and the attention output

• Computing
• Key , value , query from

•

• Attention distribution

•
Attention output

•

Y = fSA(X; θ)
Xt X
Yt Xt

Yt
kt vt qt Xt
(kt, vt, qt) = g1(Xt; θ)

αt, j = so_max(q⊤
t kj)

outt = ∑
j

αt, jvj

Yt = g2(outt; θ)

attitia
outt

Issues of Vanilla Self-Attention

• Attention is order-invariant

• Lack of non-linearities
• All the weights are simple weighted average

• Capability of autoregressive modeling
• In generation tasks, the model cannot “look at the future”
• e.g. Text generation:

• can only depend on
• But vanilla self-attention requires the entire sequence

Yt Xi<t

Position Encoding

• Vanilla self-attention
•

•

•
Attention output

• Idea: position encoding:
• : an embedding vector (feature) of position
•

• In practice: Additive is sufficient: ;

• is only included in the first layer

(kt, vt, qt) = g1(Xt; θ)
αt, j = so_max(q⊤

t kj)
outt = ∑

j
αt, jvj

pi i
(kt, vt, qt) = g1([Xt, pt]; θ)

kt ← k̃t + pt, qt ← q̃t + pt, vt ← ṽt + pt

(k̃t, ṽt, q̃t) = g1(Xt; θ)

pt

d

Position Encoding

 design 1: Sinusoidal position representation
• Pros:

• simple
• naturally models “relative position”
• Easily applied to long sequences

• Cons:
• Not learnable
• Generalization poorly to sequences longer than training data

pt

Miki 81 Head

i ftp.tlj E
I threatyouthosed

Position Encoding

 design 2: Learned representation

• Assume maximum length , learn a matrix , is a column of
• Pros:

• Flexible
• Learnable and more powerful

• Cons:
• Need to assume a fixed maximum length
• Does not work at all for length above

pt

L p ∈ ℝd×T pt p

L
L

M PL E 29

11 123
971 ph

Combine Self-Attention with Nonlinearity

• Vanilla self-attention
• No element-wise activation (e.g., ReLU, tanh)
• Only weighted average and softmax operator

• Fix:
• Add an MLP to process
•
• Usually do not put activation layer before softmaax

outi
mi = MLP(outi) = W2ReLU(W1outi + b1) + b2

Masked Attention

• In language model decoder:
• cannot look at future

• Masked attention
• Compute as usuall

• Mask out by setting
•
• is a fixed 0/1 mask matrix

• Then compute
• Remarks:

• for full self-attention
• Set for arbitrary dependency ordering

P(Yt |Xi<t)
outt Xi>t

ei, j = q⊤
i kj

ei>j ei>j = − ∞
e ⊙ (1 − M) ← − ∞
M

αi = so_max(ei)

M = 1
M

01

Transformer

Transformer-based sequence-to-sequence modeling

Key-query-value attention

• Obtain from

• ; ; (position encoding omitted)

• are learnable weight matrices

•

• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = so_max(q⊤
i kj); outi = ∑

k
αi, jvj

Multi-headed attention

• Standard attention: single-headed attention
• ,
• We only look at a single position with

high
• What if we want to look at different for

different reasons?
• Idea: define separate attention heads

• different attention distributions, keys,
values, and queries

• for

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = so_max((qℓ

i)⊤kℓ
j); outℓ

i = ∑
j

αℓ
i, jvℓ

j

we

n n

Multi-headed attention

• Standard attention: single-headed attention
• ,
• We only look at a single position with

high
• What if we want to look at different for

different reasons?
• Idea: define separate attention heads

• different attention distributions, keys,
values, and queries

• for

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = so_max((qℓ

i)⊤kℓ
j); outℓ

i = ∑
j

αℓ
i, jvℓ

j

Transformer

Transformer-based sequence-to-sequence modeling

• Basic building blocks: self-attention
• Position encoding
• Post-processing MLP
• Attention mask

• Enhancements:
• Key-query-value attention
• Multi-headed attention
• Architecture modifications:

• Residual connection
• Layer normalization

Transformer

Machine translation with transformer

Transformer

• Limitations of transformer: Quadratic computation cost
• Linear for RNNs
• Large cost for large sequence length, e.g.,

• Follow-ups:
• Large-scale training: transformer-XL; XL-net (‘20)
• Projection tricks to : Linformer ('20)
• Math tricks to : Performer (‘20)
• Sparse interactions: Big Bird (‘20)
• Deeper transformers: DeepNet (’22)

L > 104

O(L)
O(L)

E

Transformer for Images

• Vision Transformer (’21)
• Decompose an image to 16x16 patches and then apply transformer encoder

Transformer for Images

• Swin Transformer (’21)
• Build hierachical feature maps at different resolution

• Self-attention only within each block
• Shifted block partitions to encode information between blocks

Summary

• Language model & sequence to sequence model:
• Fundamental ideas and methods for sequence modeling

• Attention mechanism
• So far the most successful idea for sequence data in deep learning
• A scale/order-invariant representation
• Transformer: a fully attention-based architecture for sequence data
• Transformer + Pretraining: the core idea in today’s NLP tasks

• LSTM is still useful in lightweight scenarios

Other architectures

Graph Neural Networks

n a

n
n

Graph Neural Networks

2

Geometric Deep Learning

