Attention Mechanism

Machine Translation

- Before 2014: Statistical Machine Translation (SMT)
	- Extremely complex systems that require massive human efforts
	- Separately designed components
	- A lot of feature engineering
	- Lots of linguistic domain knowledge and expertise
- Before 2016:
	- Google Translate is based on statistical machine learning
- What happened in 2014?
	- Neural machine translation (NMT)

Sequence to Sequence Model

- Neural Machine Translation (NMT)
	- Learning to translate via a single end-to-end neural network.
	- Source language sentence \overline{X} , target language sentence $Y = f(X; \theta)$
- Sequence to Sequence Model (Seq2Seq, Sutskever et al. , '14)
	- Two RNNs: f_{enc} and f_{dec}

Jens ^X information of

- Encoder f_{enc} :
	- \bullet Takes X as input, and output the initial hidden state for decoder $\int_{\mathcal{U}} \rho(\int \mathcal{U}) \cdot (\mathcal{V})$) \rightarrow \forall
	- Can use bidirectional RNN
- \bullet Decoder f_{dec} :
	- It takes in the hidden state from f_{enc} to generate Y
	- Can use autoregressive language model

Training Sequence to Sequence Model

- Collect a huge paired dataset and train it end-to-end via BPTT
- Loss induced by MLE $P(Y|X) = P(Y|f_{enc}(X))$ *enc*(*X*)) source laugue sentence

Seg2seg is optimized as a single system. Backpropagation operates "end-to-end".

Deep Sequence to Sequence Model

• Stacked seq2seq model

Machine Translation

• 2016: Google switched Google Translate from SMT to NMT

Alignment

- Alignment: the word-level correspondence between X and Y
- Can have complex long-term dependencies

Issue in Seq2Seq

- Alignment: the word-level correspondence between X and Y
	- The information bottleneck due to the hidden state *h*
	- We want each Y_t to also focus on some X_i that it is aligned with

- . NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, '15)
- · Core idea:

 \bullet

• When decoding Y_{t} , consider both hidden states and alignment:

\n- \n Hidden state:
$$
h_t = f_{dec}(Y_{i < t})
$$
\n
\n- \n Alignment: connect to a portion of *X* to focus on?\n
\n- \n When portion of *X* to focus on?\n
\n- \n Learn a softmax weight over *X*: attention distribution P_{att} \n
\n- \n $\frac{P_{att}(X_i | h_t)}{P_{out}(X_i | h_t)}$: how much attention to put on word *X_i*\n
\n- \n Attention output $h_{att} = \sum_i f_{enc}(X_i | X_{j < i}) \cdot P_{att}(X_i | h_{t-1}) \in \mathbb{R}$ \n
\n- \n Use h_t and $h_{att}t$ to compute Y_t \n
\n- \n $\forall t \in \mathcal{F} \text{ (} h_t, h \text{ and }\n \rangle$ \n
\n

Decoder RNN

Decoder RNN

Decoder RNN

Summary

- Input sequence X , encoder f_{enc} , and decoder f_{dec}
- $f_{enc}(X)$ produces hidden states $h_1^{enc}, h_2^{enc}, ..., h_N^{enc}$
- On time step t , we have decoder hidden state h_t
- Compute attention score $e_i = h_i^{\text{T}} h_i^{enc}$
- Compute attention distribution $\alpha_i = P_{att}(X_i) = \text{softmax}(e_i)$

 \bullet Attention output: $h_{att}^{enc} = \sum_i \alpha_i h_i^{enc}$ *i*

- $Y_t \sim g(h_t, h_{att}^{enc}; \theta)$
	- Sample an output using both h_t and h_{att}^{enc}

Attention

- It significantly improves NMT.
- It solves the bottleneck problem and the long-term dependency issue.
- Also helps gradient vanishing problem.
- Provides some interpretability
	- Understanding which word the RNN encoder focuses on
- Attention is a general technique
	- Given a set of vector values V_i and vector query q
	- Attention computes a weighted sum of values depending on *q*

Other use cases:

- Attention can be viewed as a module.
- In encoder and decoder (more on this later)
- A representation of a set of points
	- Pointer network (Vinyals, Forunato, Jaitly '15)
	- Deep Sets (Zaheer et al., '17)
- Convolutional neural networks
	- To include non-local information in CNN (Non-local network, '18)

Attention

- Representation learning:
	- A method to obtain a fixed representation corresponding to a query q from an arbitrary set of representations $\{V_i\}$ h^{\prime} h+
	- Attention distribution: α_i = softmax($f(v_i, q)$)

Attention output:
$$
v_{att} = \sum \alpha_i v_i
$$

\n- Attent variant:
$$
f(v_i, q)
$$
\n

- Multiplicative attention: $f(v_i, q) = q^{\top}Wh_i$, W is a weight matrix
- Additive attention: $f(v_i, q) = u^\top \tanh(W_1v_i + W_2q)$

i

Key-query-value attention

$$
h_{t}T_{h_{t}}^{enc}\rightarrow saw_{t}T_{t}^{enc}
$$

• Obtain q_t , v_t , k_t from X_t

• $q_t = \underbrace{W^q X_t}{, v_t}$ $v_t = \underbrace{W^v X_t}{, k_t}$ $k_t = \underbrace{W^k X_t}{, (position encoding omitted)}$

• W^q , W^v , W^k are learnable weight matrices

$$
\mathbf{a}_{i,j} = \text{softmax}(q_i^\top k_j); out_i = \sum_k \alpha_{i,j} v_j
$$

• Intuition: key, query, and value can focus on different parts of input

Attention is all you need (Vsawani '17)

- A pure attention-based architecture for sequence modeling
	- No RNN at all!
- Basic component: self-attention, $Y = f_{SA}(X; \theta)$
	- X_t uses attention on entire X sequence
	- Y_t computed from X_t and the attention output
- Computing Y_t
	- Key k_t , value v_t , query q_t from X_t
		- $(k_t, v_t, q_t) = g_1(X_t; \theta)$
	- Attention distribution $\alpha_{t,j} = \text{softmax}(q_t^\top k_j)$
		- Attention output $\mathit{out}_t = \sum a_{t,j} v_j \stackrel{\textrm{mod}}{=} a_{t,j} \delta$ *j* outt
		- $Y_t = g_2(out_t; \theta)$

Issues of Vanilla Self-Attention

• Attention is order-invariant

- Lack of non-linearities
	- All the weights are simple weighted average

- Capability of autoregressive modeling
	- In generation tasks, the model cannot "look at the future"
	- e.g. Text generation:
		- Y_t can only depend on $X_{i < t}$
		- But vanilla self-attention requires the entire sequence

Position Encoding

- Vanilla self-attention
	- $(k_t, v_t, q_t) = g_1(X_t; \theta)$
	- $\alpha_{t,j} = \text{softmax}(q_t^\top k_j)$

• Attention output $\mathit{out}_t = \sum a_{t,j} v_j$ *j*

- Idea: position encoding:
	- p_i : an embedding vector (feature) of position *i*
	- $(k_t, v_t, q_t) = g_1([X_t, p_t]; \theta)$
- In practice: Additive is sufficient: $k_t \leftarrow \tilde{k}_t + p_t, q_t \leftarrow \tilde{q}_t + p_t, v_t \leftarrow \tilde{v}_t + p_t$; $(\tilde{k}_t, \tilde{v}_t, \tilde{q}_t) = g_1(X_t; \theta)$
- p_t is only included in the first layer

Position Encoding

 p_{t} design 1: **Sinusoidal position representation**

- Pros:
	- simple
	- naturally models "relative position"
	- Easily applied to long sequences
- Cons:
	- Not learnable
	- Generalization poorly to sequences longer than training data

Index in the sequence

 $\vec{r} = \vec{r} = \vec{r}$
 $\vec{r} = \vec{r}$

I is far
meaty vullosed

Position Encoding

$P_{1,1}, \ldots, P_{L} \in \mathcal{P}^{\mathcal{U}}$ $\begin{cases} 1, 1, 1, 1 \ 0, 0, 1, 1, 1 \end{cases}$

p_t design 2: Learned representation

- Assume maximum length L, learn a matrix $p \in \mathbb{R}^{d \times 1}$, p_t is a column of p \overline{q} ^v
- Pros:
	- Flexible
	- Learnable and more powerful
- Cons:
	- Need to assume a fixed maximum length *L*
	- Does not work at all for length above *L*

Combine Self-Attention with Nonlinearity

- Vanilla self-attention
	- No element-wise activation (e.g., ReLU, tanh)
	- Only weighted average and softmax operator
- Fix:
	- Add an MLP to process *out i*
	- $m_i = MLP(out_i) = W_2ReLU(W_1out_i + b_1) + b_2$
	- Usually do not put activation layer before softmaax

Masked Attention

- In language model decoder: $P(Y_t | X_{i$
	- out_t cannot look at future $X_{i>t}$
- Masked attention
	- Compute $e_{i,j} = q_i^\top k_j$ as usuall 70
	- Mask out $e_{i>j}$ by setting $(e_{i>j} = -\infty)$ $\frac{1}{\sqrt{1-\frac{1}{2}}}$
		- $e \odot (1 M) \leftarrow -\infty$
		- *M* is a fixed 0/1 mask matrix
	- Then compute $\alpha_i = \text{softmax}(e_i)$
	- Remarks:
		- $M = 1$ for full self-attention
		- Set M for arbitrary dependency ordering

raw attention weights

mask

Transformer-based sequence-to-sequence modeling

Key-query-value attention

- Obtain q_t , v_t , k_t from X_t
- $q_t = W^q X_t$; $v_t = W^v X_t$; $k_t = W^k X_t$ (position encoding omitted)
	- W^q , W^v , W^k are learnable weight matrices

$$
\bullet \ \alpha_{i,j} = \text{softmax}(q_i^\top k_j); out_i = \sum_k \alpha_{i,j} v_j
$$

• Intuition: key, query, and value can focus on different parts of input

Multi-headed attention

- Standard attention: single-headed attention
	- \bullet $X_t \in \mathbb{R}^d$, $Q, K, V \in \mathbb{R}^{d \times d}$
	- We only look at a single position j with high $\alpha_{i,j}$
	- What if we want to look at different j for different reasons?
- Idea: define *h* separate attention heads
	- *h* different attention distributions, keys, values, and queries

•
$$
Q^{\ell}, K^{\ell}, V^{\ell} \in \mathbb{R}^{d \times \frac{d}{h}}
$$
 for $1 \leq \ell \leq h$
• $\alpha_{i,j}^{\ell} = \text{softmax}((q_i^{\ell})^T k_j^{\ell}); out_i^{\ell} = \sum_j \alpha_{i,j}^{\ell} v_j^{\ell}$

#Params Unchanged!

Multi-headed attention

- Standard attention: single-headed attention
	- \bullet $X_t \in \mathbb{R}^d$, $Q, K, V \in \mathbb{R}^{d \times d}$
	- We only look at a single position j with high $\alpha_{i,j}$
	- What if we want to look at different j for different reasons?
- Idea: define h separate attention heads
	- *h* different attention distributions, keys, values, and queries
	- $Q^{\ell}, K^{\ell}, V^{\ell} \in \mathbb{R}^{d \times \frac{d}{h}}$ for $1 \leq \ell \leq h$

$$
\mathbf{a}_{i,j}^{\ell} = \text{softmax}((q_i^{\ell})^{\top} k_j^{\ell}); out_i^{\ell} = \sum_j \alpha_{i,j}^{\ell} v_j^{\ell}
$$

Transformer-based sequence-to-sequence model

- Basic building blocks: self-attention
	- Position encoding
	- Post-processing MLP
	- Attention mask
- Enhancements:
	- Key-query-value attention
	- Multi-headed attention
	- Architecture modifications:
		- Residual connection
		- Layer normalization

Machine translation with transformer

- $\frac{1}{2}$
- Limitations of transformer: Quadratic computation cost
	- Linear for RNNs
	- Large cost for large sequence length, e.g., $L > 10^4$
- Follow-ups:
	- Large-scale training: transformer-XL; XL-net ('20)
	- Projection tricks to $O(L)$: Linformer ('20)
	- Math tricks to $O(L)$: Performer ('20)
	- Sparse interactions: Big Bird ('20)
	- Deeper transformers: DeepNet ('22)

Transformer for Images

- Vision Transformer ('21)
	- Decompose an image to 16x16 patches and then apply transformer encoder

Transformer for Images

- Swin Transformer ('21)
	- Build hierachical feature maps at different resolution
		- Self-attention only within each block
		- Shifted block partitions to encode information between blocks

Summary

- Language model & sequence to sequence model:
	- Fundamental ideas and methods for sequence modeling
- Attention mechanism
	- So far the most successful idea for sequence data in deep learning
	- A scale/order-invariant representation
	- Transformer: a fully attention-based architecture for sequence data
	- Transformer + Pretraining: the core idea in today's NLP tasks
- LSTM is still useful in lightweight scenarios

Other architectures

Graph Neural Networks

arbitrary ordering of nodes

permutation-equivariant

$\mathbf{F(PX, PAP^{\top})} = \mathbf{PF(X, A)}$

Geometric Deep Learning

Perceptrons Function regularity

CNNs Translation

Group-CNNs Translation+Rotation

DeepSets / Transformers Permutation

GNNs Permutation

Intrinsic CNNs Local frame choice