
Attention Mechanism



Machine Translation

• Before 2014: Statistical Machine  Translation (SMT)

• Extremely complex systems that require massive human efforts

• Separately designed components

• A lot of feature engineering

• Lots of linguistic domain knowledge and expertise


• Before 2016:

• Google Translate is based on statistical machine learning


• What happened in 2014?

• Neural machine translation (NMT)



Sequence to Sequence Model

• Neural Machine Translation (NMT)

• Learning to translate via a single end-to-end neural network.

• Source language sentence , target language sentence 


• Sequence to Sequence Model (Seq2Seq, Sutskever et al. , ‘14)

• Two RNNs:  and 

• Encoder :


• Takes  as input, and output the initial hidden state for decoder

• Can use bidirectional RNN


• Decoder :

• It takes in the hidden state from  to generate 

• Can use autoregressive language model

X Y = f(X; θ)

fenc fdec
fenc
X

fdec
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Sequence to Sequence Model



Training Sequence to Sequence Model 

• Collect a huge paired dataset and train it end-to-end via BPTT

• Loss induced by MLE P(Y |X ) = P(Y | fenc(X ))



Deep Sequence to Sequence Model 

• Stacked seq2seq model



Machine Translation

• 2016: Google switched Google Translate from SMT to NMT



Alignment

• Alignment: the word-level correspondence between X and Y

• Can have complex long-term dependencies



Issue in Seq2Seq

• Alignment: the word-level correspondence between X and Y

• The information bottleneck due to the hidden state 

• We want each  to also focus on some  that it is aligned with

h
Yt Xi



Seq2Seq with Attention

• NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, ’15)

• Core idea:


• When decoding , consider both hidden states and alignment:

• Hidden state: 

• Alignment: connect to a portion of 


• When portion of  to focus on?

• Learn a softmax weight over : attention distribution 

• : how much attention to put on word 


• Attention output 


• Use  and  to compute 

Yt
ht = fdec(Yi<t)

X
X

X Patt
Patt(Xi |ht) Xi

hatt = ∑
i

fenc(Xi |Xj<i) ⋅ Patt(Xi |ht−1)

ht−1 hatt Yt
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Seq2Seq with Attention

Summary

• Input sequence , encoder , and decoder 

•  produces hidden states 


• On time step , we have decoder hidden state 


• Compute attention score 


• Compute attention distribution 


• Attention output: 


• 

• Sample an output using both  and 

X fenc fdec
fenc(X ) henc

1 , henc
2 , …, henc

N
t ht

ei = h⊤
t henc

i
αi = Patt(Xi) = softmax(ei)

henc
att = ∑

i

αihenc
i

Yt ∼ g(ht, henc
att ; θ)

ht henc
att



Attention

• It significantly improves NMT.

• It solves the bottleneck problem and the long-term dependency issue.

• Also helps gradient vanishing problem.

• Provides some interpretability


• Understanding which word the RNN encoder focuses on 


• Attention is a general technique

• Given a set of vector values  and vector query 

• Attention computes a weighted sum of values depending on 


Other use cases:

• Attention can be viewed as a module.

• In encoder and decoder (more on this later)

• A representation of a set of points


• Pointer network (Vinyals, Forunato, Jaitly ’15) 

• Deep Sets (Zaheer et al., ’17)


• Convolutional neural networks

• To include non-local information in CNN (Non-local network, ’18)

Vi q
q



Attention

• Representation learning:

• A method to obtain a fixed representation corresponding to a query  from 

an arbitrary set of representations 

• Attention distribution: 


• Attention output: 


• Attent variant: 


• Multiplicative attention: ,  is a weight matrix


• Additive attention: 

q
{Vi}

αi = softmax( f(vi, q))

vatt = ∑
i

αivi

f(vi, q)
f(vi, q) = q⊤Whi W

f(vi, q) = u⊤tanh(W1vi + W2q)



Key-query-value attention

• Obtain  from 


• ; ;  (position encoding omitted)


•  are learnable weight matrices


• 


• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = softmax(q⊤
i kj); outi = ∑

k

αi, jvj



Attention is all you need (Vsawani ’17)

• A pure attention-based architecture for sequence modeling

• No RNN at all!


• Basic component: self-attention, 

•  uses attention on entire  sequence

•  computed from  and the attention output


• Computing 

• Key , value , query  from 


• 


• Attention distribution 


•
Attention output 


•  

Y = fSA(X; θ)
Xt X
Yt Xt

Yt
kt vt qt Xt
(kt, vt, qt) = g1(Xt; θ)

αt, j = softmax(q⊤
t kj)

outt = ∑
j

αt, jvj

Yt = g2(outt; θ)



Issues of Vanilla Self-Attention

• Attention is order-invariant


• Lack of non-linearities

• All the weights are simple weighted average


• Capability of autoregressive modeling

• In generation tasks, the model cannot “look at the future”

• e.g. Text generation:


•  can only depend on 

• But vanilla self-attention requires the entire sequence

Yt Xi<t



Position Encoding

• Vanilla self-attention

• 


• 


•
Attention output 


• Idea: position encoding:

• : an embedding vector (feature) of position 

• 


• In practice: Additive is sufficient: ; 




•  is only included in the first layer

(kt, vt, qt) = g1(Xt; θ)
αt, j = softmax(q⊤

t kj)

outt = ∑
j

αt, jvj

pi i
(kt, vt, qt) = g1([Xt, pt]; θ)

kt ← k̃t + pt, qt ← q̃t + pt, vt ← ṽt + pt

(k̃t, ṽt, q̃t) = g1(Xt; θ)

pt



Position Encoding

 design 1: Sinusoidal position representation

• Pros: 


• simple

• naturally models “relative position”

• Easily applied to long sequences


• Cons:

• Not learnable

• Generalization poorly to sequences longer than training data

pt



Position Encoding

 design 2: Learned representation


• Assume maximum length , learn a matrix ,  is a column of 

• Pros: 


• Flexible

• Learnable and more powerful


• Cons:

• Need to assume a fixed maximum length 

• Does not work at all for length above 


pt

L p ∈ ℝd×T pt p

L
L



Combine Self-Attention with Nonlinearity

• Vanilla self-attention

• No element-wise activation (e.g., ReLU, tanh)

• Only weighted average and softmax operator


• Fix:

• Add an MLP to process 

• 

• Usually do not put activation layer before softmaax


outi
mi = MLP(outi) = W2ReLU(W1outi + b1) + b2



Masked Attention

• In language model decoder: 

•   cannot look at future 


• Masked attention


• Compute  as usuall


• Mask out  by setting 


• 

•  is a fixed 0/1 mask matrix


• Then compute 

• Remarks:


•  for full self-attention

• Set  for arbitrary dependency ordering


P(Yt |Xi<t)
outt Xi>t

ei, j = q⊤
i kj

ei>j ei>j = − ∞
e ⊙ (1 − M ) ← − ∞
M

αi = softmax(ei)

M = 1
M



Transformer

Transformer-based sequence-to-sequence modeling




Key-query-value attention

• Obtain  from 


• ; ;  (position encoding omitted)


•  are learnable weight matrices


• 


• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = softmax(q⊤
i kj); outi = ∑

k

αi, jvj



Multi-headed attention

• Standard attention: single-headed attention


• , 

• We only look at a single position  with 

high 


• What if we want to  look at different  for 
different reasons?


• Idea: define  separate attention heads

•  different attention distributions, keys, 

values, and queries


•  for 


•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = softmax((qℓ

i )⊤kℓ
j ); outℓ

i = ∑
j

αℓ
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ℓ
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Transformer

Transformer-based sequence-to-sequence modeling


• Basic building blocks: self-attention

• Position encoding

• Post-processing MLP

• Attention mask


• Enhancements:

• Key-query-value attention

• Multi-headed attention

• Architecture modifications:


• Residual connection

• Layer normalization




Transformer

Machine translation with transformer




Transformer

• Limitations of transformer: Quadratic computation cost

• Linear for RNNs

• Large cost for large sequence length, e.g., 


• Follow-ups:

• Large-scale training: transformer-XL; XL-net (‘20)

• Projection tricks to : Linformer ('20)

• Math tricks to : Performer (‘20)

• Sparse interactions: Big Bird (‘20)

• Deeper transformers: DeepNet (’22)


L > 104

O(L)
O(L)



Transformer for Images

• Vision Transformer (’21)

• Decompose an image to 16x16 patches and then apply transformer encoder




Transformer for Images

• Swin Transformer (’21)

• Build hierachical feature maps at different resolution


• Self-attention only within each block

• Shifted block partitions to encode information between blocks




CNN vs. RNN vs. Attention



Summary

• Language model & sequence to sequence model:

• Fundamental ideas and methods for sequence modeling


• Attention mechanism

• So far the most successful idea for sequence data in deep learning

• A scale/order-invariant representation

• Transformer: a fully attention-based architecture for sequence data

• Transformer + Pretraining: the core idea in today’s NLP tasks


• LSTM is still useful in lightweight scenarios




Other architectures



Graph Neural Networks



Graph Neural Networks



Geometric Deep Learning


