
Attention Mechanism

Machine Translation

• Before 2014: Statistical Machine Translation (SMT)

• Extremely complex systems that require massive human efforts

• Separately designed components

• A lot of feature engineering

• Lots of linguistic domain knowledge and expertise

• Before 2016:

• Google Translate is based on statistical machine learning

• What happened in 2014?

• Neural machine translation (NMT)

Sequence to Sequence Model

• Neural Machine Translation (NMT)

• Learning to translate via a single end-to-end neural network.

• Source language sentence , target language sentence

• Sequence to Sequence Model (Seq2Seq, Sutskever et al. , ‘14)

• Two RNNs: and

• Encoder :

• Takes as input, and output the initial hidden state for decoder

• Can use bidirectional RNN

• Decoder :

• It takes in the hidden state from to generate

• Can use autoregressive language model

X Y = f(X; θ)

fenc fdec
fenc
X

fdec
fenc Y

Sequence to Sequence Model

Training Sequence to Sequence Model

• Collect a huge paired dataset and train it end-to-end via BPTT

• Loss induced by MLE P(Y |X) = P(Y | fenc(X))

Deep Sequence to Sequence Model

• Stacked seq2seq model

Machine Translation

• 2016: Google switched Google Translate from SMT to NMT

Alignment

• Alignment: the word-level correspondence between X and Y

• Can have complex long-term dependencies

Issue in Seq2Seq

• Alignment: the word-level correspondence between X and Y

• The information bottleneck due to the hidden state

• We want each to also focus on some that it is aligned with

h
Yt Xi

Seq2Seq with Attention

• NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, ’15)

• Core idea:

• When decoding , consider both hidden states and alignment:

• Hidden state:

• Alignment: connect to a portion of

• When portion of to focus on?

• Learn a softmax weight over : attention distribution

• : how much attention to put on word

• Attention output

• Use and to compute

Yt
ht = fdec(Yi<t)

X
X

X Patt
Patt(Xi |ht) Xi

hatt = ∑
i

fenc(Xi |Xj<i) ⋅ Patt(Xi |ht−1)

ht−1 hatt Yt

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Summary

• Input sequence , encoder , and decoder

• produces hidden states

• On time step , we have decoder hidden state

• Compute attention score

• Compute attention distribution

• Attention output:

•

• Sample an output using both and

X fenc fdec
fenc(X) henc

1 , henc
2 , …, henc

N
t ht

ei = h⊤
t henc

i
αi = Patt(Xi) = softmax(ei)

henc
att = ∑

i

αihenc
i

Yt ∼ g(ht, henc
att ; θ)

ht henc
att

Attention

• It significantly improves NMT.

• It solves the bottleneck problem and the long-term dependency issue.

• Also helps gradient vanishing problem.

• Provides some interpretability

• Understanding which word the RNN encoder focuses on

• Attention is a general technique

• Given a set of vector values and vector query

• Attention computes a weighted sum of values depending on

Other use cases:

• Attention can be viewed as a module.

• In encoder and decoder (more on this later)

• A representation of a set of points

• Pointer network (Vinyals, Forunato, Jaitly ’15)

• Deep Sets (Zaheer et al., ’17)

• Convolutional neural networks

• To include non-local information in CNN (Non-local network, ’18)

Vi q
q

Attention

• Representation learning:

• A method to obtain a fixed representation corresponding to a query from

an arbitrary set of representations

• Attention distribution:

• Attention output:

• Attent variant:

• Multiplicative attention: , is a weight matrix

• Additive attention:

q
{Vi}

αi = softmax(f(vi, q))

vatt = ∑
i

αivi

f(vi, q)
f(vi, q) = q⊤Whi W

f(vi, q) = u⊤tanh(W1vi + W2q)

Key-query-value attention

• Obtain from

• ; ; (position encoding omitted)

• are learnable weight matrices

•

• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = softmax(q⊤
i kj); outi = ∑

k

αi, jvj

Attention is all you need (Vsawani ’17)

• A pure attention-based architecture for sequence modeling

• No RNN at all!

• Basic component: self-attention,

• uses attention on entire sequence

• computed from and the attention output

• Computing

• Key , value , query from

•

• Attention distribution

•
Attention output

•

Y = fSA(X; θ)
Xt X
Yt Xt

Yt
kt vt qt Xt
(kt, vt, qt) = g1(Xt; θ)

αt, j = softmax(q⊤
t kj)

outt = ∑
j

αt, jvj

Yt = g2(outt; θ)

Issues of Vanilla Self-Attention

• Attention is order-invariant

• Lack of non-linearities

• All the weights are simple weighted average

• Capability of autoregressive modeling

• In generation tasks, the model cannot “look at the future”

• e.g. Text generation:

• can only depend on

• But vanilla self-attention requires the entire sequence

Yt Xi<t

Position Encoding

• Vanilla self-attention

•

•

•
Attention output

• Idea: position encoding:

• : an embedding vector (feature) of position

•

• In practice: Additive is sufficient: ;

• is only included in the first layer

(kt, vt, qt) = g1(Xt; θ)
αt, j = softmax(q⊤

t kj)

outt = ∑
j

αt, jvj

pi i
(kt, vt, qt) = g1([Xt, pt]; θ)

kt ← k̃t + pt, qt ← q̃t + pt, vt ← ṽt + pt

(k̃t, ṽt, q̃t) = g1(Xt; θ)

pt

Position Encoding

 design 1: Sinusoidal position representation

• Pros:

• simple

• naturally models “relative position”

• Easily applied to long sequences

• Cons:

• Not learnable

• Generalization poorly to sequences longer than training data

pt

Position Encoding

 design 2: Learned representation

• Assume maximum length , learn a matrix , is a column of

• Pros:

• Flexible

• Learnable and more powerful

• Cons:

• Need to assume a fixed maximum length

• Does not work at all for length above

pt

L p ∈ ℝd×T pt p

L
L

Combine Self-Attention with Nonlinearity

• Vanilla self-attention

• No element-wise activation (e.g., ReLU, tanh)

• Only weighted average and softmax operator

• Fix:

• Add an MLP to process

•

• Usually do not put activation layer before softmaax

outi
mi = MLP(outi) = W2ReLU(W1outi + b1) + b2

Masked Attention

• In language model decoder:

• cannot look at future

• Masked attention

• Compute as usuall

• Mask out by setting

•

• is a fixed 0/1 mask matrix

• Then compute

• Remarks:

• for full self-attention

• Set for arbitrary dependency ordering

P(Yt |Xi<t)
outt Xi>t

ei, j = q⊤
i kj

ei>j ei>j = − ∞
e ⊙ (1 − M) ← − ∞
M

αi = softmax(ei)

M = 1
M

Transformer

Transformer-based sequence-to-sequence modeling

Key-query-value attention

• Obtain from

• ; ; (position encoding omitted)

• are learnable weight matrices

•

• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = softmax(q⊤
i kj); outi = ∑

k

αi, jvj

Multi-headed attention

• Standard attention: single-headed attention

• ,

• We only look at a single position with

high

• What if we want to look at different for
different reasons?

• Idea: define separate attention heads

• different attention distributions, keys,

values, and queries

• for

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = softmax((qℓ

i)⊤kℓ
j); outℓ

i = ∑
j

αℓ
i, jv

ℓ
j

Multi-headed attention

• Standard attention: single-headed attention

• ,

• We only look at a single position with

high

• What if we want to look at different for
different reasons?

• Idea: define separate attention heads

• different attention distributions, keys,

values, and queries

• for

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = softmax((qℓ

i)⊤kℓ
j); outℓ

i = ∑
j

αℓ
i, jv

ℓ
j

Transformer

Transformer-based sequence-to-sequence modeling

• Basic building blocks: self-attention

• Position encoding

• Post-processing MLP

• Attention mask

• Enhancements:

• Key-query-value attention

• Multi-headed attention

• Architecture modifications:

• Residual connection

• Layer normalization

Transformer

Machine translation with transformer

Transformer

• Limitations of transformer: Quadratic computation cost

• Linear for RNNs

• Large cost for large sequence length, e.g.,

• Follow-ups:

• Large-scale training: transformer-XL; XL-net (‘20)

• Projection tricks to : Linformer ('20)

• Math tricks to : Performer (‘20)

• Sparse interactions: Big Bird (‘20)

• Deeper transformers: DeepNet (’22)

L > 104

O(L)
O(L)

Transformer for Images

• Vision Transformer (’21)

• Decompose an image to 16x16 patches and then apply transformer encoder

Transformer for Images

• Swin Transformer (’21)

• Build hierachical feature maps at different resolution

• Self-attention only within each block

• Shifted block partitions to encode information between blocks

CNN vs. RNN vs. Attention

Summary

• Language model & sequence to sequence model:

• Fundamental ideas and methods for sequence modeling

• Attention mechanism

• So far the most successful idea for sequence data in deep learning

• A scale/order-invariant representation

• Transformer: a fully attention-based architecture for sequence data

• Transformer + Pretraining: the core idea in today’s NLP tasks

• LSTM is still useful in lightweight scenarios

Other architectures

Graph Neural Networks

Graph Neural Networks

Geometric Deep Learning

