
Attention Mechanism



Machine Translation

• Before 2014: Statistical Machine  Translation (SMT) 
• Extremely complex systems that require massive human efforts 
• Separately designed components 
• A lot of feature engineering 
• Lots of linguistic domain knowledge and expertise 

• Before 2016: 
• Google Translate is based on statistical machine learning 

• What happened in 2014? 
• Neural machine translation (NMT)



Sequence to Sequence Model

• Neural Machine Translation (NMT) 
• Learning to translate via a single end-to-end neural network. 
• Source language sentence , target language sentence  

• Sequence to Sequence Model (Seq2Seq, Sutskever et al. , ‘14) 
• Two RNNs:  and  
• Encoder : 

• Takes  as input, and output the initial hidden state for decoder 
• Can use bidirectional RNN 

• Decoder : 
• It takes in the hidden state from  to generate  
• Can use autoregressive language model

X Y = f(X; θ)

fenc fdec
fenc
X

fdec
fenc Y



Sequence to Sequence Model



Training Sequence to Sequence Model 

• Collect a huge paired dataset and train it end-to-end via BPTT 
• Loss induced by MLE P(Y |X ) = P(Y | fenc(X ))



Deep Sequence to Sequence Model 

• Stacked seq2seq model



Machine Translation

• 2016: Google switched Google Translate from SMT to NMT



Alignment

• Alignment: the word-level correspondence between X and Y 
• Can have complex long-term dependencies



Issue in Seq2Seq

• Alignment: the word-level correspondence between X and Y 
• The information bottleneck due to the hidden state  
• We want each  to also focus on some  that it is aligned with

h
Yt Xi



Seq2Seq with Attention

• NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, ’15) 
• Core idea: 

• When decoding , consider both hidden states and alignment: 
• Hidden state:  
• Alignment: connect to a portion of  

• When portion of  to focus on? 
• Learn a softmax weight over : attention distribution  
• : how much attention to put on word  

• Attention output  

• Use  and  to compute 

Yt
ht = fdec(Yi<t)

X
X

X Patt
Patt(Xi |ht) Xi

hatt = ∑
i

fenc(Xi |Xj<i) ⋅ Patt(Xi |ht−1)

ht−1 hatt Yt
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Seq2Seq with Attention

Summary 
• Input sequence , encoder , and decoder  
•  produces hidden states  

• On time step , we have decoder hidden state  

• Compute attention score  

• Compute attention distribution  

• Attention output:  

•  
• Sample an output using both  and 

X fenc fdec
fenc(X ) henc

1 , henc
2 , …, henc

N
t ht

ei = h⊤
t henc

i
αi = Patt(Xi) = so_max(ei)

henc
att = ∑

i

αihenc
i

Yt ∼ g(ht, henc
att ; θ)

ht henc
att



Attention

• It significantly improves NMT. 
• It solves the bottleneck problem and the long-term dependency issue. 
• Also helps gradient vanishing problem. 
• Provides some interpretability 

• Understanding which word the RNN encoder focuses on  

• Attention is a general technique 
• Given a set of vector values  and vector query  
• Attention computes a weighted sum of values depending on  

Other use cases: 
• Attention can be viewed as a module. 
• In encoder and decoder (more on this later) 
• A representation of a set of points 

• Pointer network (Vinyals, Forunato, Jaitly ’15)  
• Deep Sets (Zaheer et al., ’17) 

• Convolutional neural networks 
• To include non-local information in CNN (Non-local network, ’18)

Vi q
q



Attention

• Representation learning: 
• A method to obtain a fixed representation corresponding to a query  from 

an arbitrary set of representations  
• Attention distribution:  

• Attention output:  

• Attent variant:  

• Multiplicative attention: ,  is a weight matrix 

• Additive attention: 

q
{Vi}

αi = so_max( f(vi, q))

vatt = ∑
i

αivi

f(vi, q)
f(vi, q) = q⊤Whi W

f(vi, q) = u⊤tanh(W1vi + W2q)



Key-query-value attention

• Obtain  from  

• ; ;  (position encoding omitted) 

•  are learnable weight matrices 

•  

• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = so_max(q⊤
i kj); outi = ∑

k

αi, jvj



Attention is all you need (Vsawani ’17)

• A pure attention-based architecture for sequence modeling 
• No RNN at all! 

• Basic component: self-attention,  
•  uses attention on entire  sequence 
•  computed from  and the attention output 

• Computing  
• Key , value , query  from  

•  

• Attention distribution  

•
Attention output  

•  

Y = fSA(X; θ)
Xt X
Yt Xt

Yt
kt vt qt Xt
(kt, vt, qt) = g1(Xt; θ)

αt, j = so_max(q⊤
t kj)

outt = ∑
j

αt, jvj

Yt = g2(outt; θ)



Issues of Vanilla Self-Attention

• Attention is order-invariant 

• Lack of non-linearities 
• All the weights are simple weighted average 

• Capability of autoregressive modeling 
• In generation tasks, the model cannot “look at the future” 
• e.g. Text generation: 

•  can only depend on  
• But vanilla self-attention requires the entire sequence

Yt Xi<t



Position Encoding

• Vanilla self-attention 
•  

•  

•
Attention output  

• Idea: position encoding: 
• : an embedding vector (feature) of position  
•  

• In practice: Additive is sufficient: ; 

 

•  is only included in the first layer

(kt, vt, qt) = g1(Xt; θ)
αt, j = so_max(q⊤

t kj)

outt = ∑
j

αt, jvj

pi i
(kt, vt, qt) = g1([Xt, pt]; θ)

kt ← k̃t + pt, qt ← q̃t + pt, vt ← ṽt + pt

(k̃t, ṽt, q̃t) = g1(Xt; θ)

pt



Position Encoding

 design 1: Sinusoidal position representation 
• Pros:  

• simple 
• naturally models “relative position” 
• Easily applied to long sequences 

• Cons: 
• Not learnable 
• Generalization poorly to sequences longer than training data

pt



Position Encoding

 design 2: Learned representation 

• Assume maximum length , learn a matrix ,  is a column of  
• Pros:  

• Flexible 
• Learnable and more powerful 

• Cons: 
• Need to assume a fixed maximum length  
• Does not work at all for length above  

pt

L p ∈ ℝd×T pt p

L
L



Combine Self-Attention with Nonlinearity

• Vanilla self-attention 
• No element-wise activation (e.g., ReLU, tanh) 
• Only weighted average and softmax operator 

• Fix: 
• Add an MLP to process  
•  
• Usually do not put activation layer before softmaax 

outi
mi = MLP(outi) = W2ReLU(W1outi + b1) + b2



Masked Attention

• In language model decoder:  
•   cannot look at future  

• Masked attention 

• Compute  as usuall 

• Mask out  by setting  

•  
•  is a fixed 0/1 mask matrix 

• Then compute  
• Remarks: 

•  for full self-attention 
• Set  for arbitrary dependency ordering 

P(Yt |Xi<t)
outt Xi>t

ei, j = q⊤
i kj

ei>j ei>j = − ∞
e ⊙ (1 − M ) ← − ∞
M

αi = so_max(ei)

M = 1
M



Transformer

Transformer-based sequence-to-sequence modeling 



Key-query-value attention

• Obtain  from  

• ; ;  (position encoding omitted) 

•  are learnable weight matrices 

•  

• Intuition: key, query, and value can focus on different parts of input

qt, vt, kt Xt

qt = WqXt vt = WvXt kt = WkXt

Wq, Wv, Wk

αi, j = so_max(q⊤
i kj); outi = ∑

k

αi, jvj



Multi-headed attention

• Standard attention: single-headed attention 

• ,  
• We only look at a single position  with 

high  

• What if we want to  look at different  for 
different reasons? 

• Idea: define  separate attention heads 
•  different attention distributions, keys, 

values, and queries 

•  for  

•

Xt ∈ ℝd Q, K, V ∈ ℝd×d

j
αi, j

j

h
h

Qℓ, Kℓ, Vℓ ∈ ℝd× d
h 1 ≤ ℓ ≤ h

αℓ
i, j = so_max((qℓ

i )⊤kℓ
j ); outℓ
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j
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i, jv

ℓ
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Transformer

Transformer-based sequence-to-sequence modeling 

• Basic building blocks: self-attention 
• Position encoding 
• Post-processing MLP 
• Attention mask 

• Enhancements: 
• Key-query-value attention 
• Multi-headed attention 
• Architecture modifications: 

• Residual connection 
• Layer normalization 



Transformer

Machine translation with transformer 



Transformer

• Limitations of transformer: Quadratic computation cost 
• Linear for RNNs 
• Large cost for large sequence length, e.g.,  

• Follow-ups: 
• Large-scale training: transformer-XL; XL-net (‘20) 
• Projection tricks to : Linformer ('20) 
• Math tricks to : Performer (‘20) 
• Sparse interactions: Big Bird (‘20) 
• Deeper transformers: DeepNet (’22) 

L > 104

O(L)
O(L)



Transformer for Images

• Vision Transformer (’21) 
• Decompose an image to 16x16 patches and then apply transformer encoder 



Transformer for Images

• Swin Transformer (’21) 
• Build hierachical feature maps at different resolution 

• Self-attention only within each block 
• Shifted block partitions to encode information between blocks 



CNN vs. RNN vs. Attention



Summary

• Language model & sequence to sequence model: 
• Fundamental ideas and methods for sequence modeling 

• Attention mechanism 
• So far the most successful idea for sequence data in deep learning 
• A scale/order-invariant representation 
• Transformer: a fully attention-based architecture for sequence data 
• Transformer + Pretraining: the core idea in today’s NLP tasks 

• LSTM is still useful in lightweight scenarios 



Other architectures



Graph Neural Networks



Graph Neural Networks



Geometric Deep Learning


