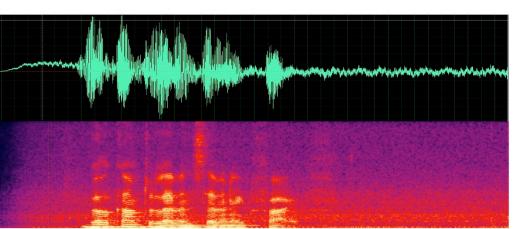
Recurrent Neural Networks

Sequence Data



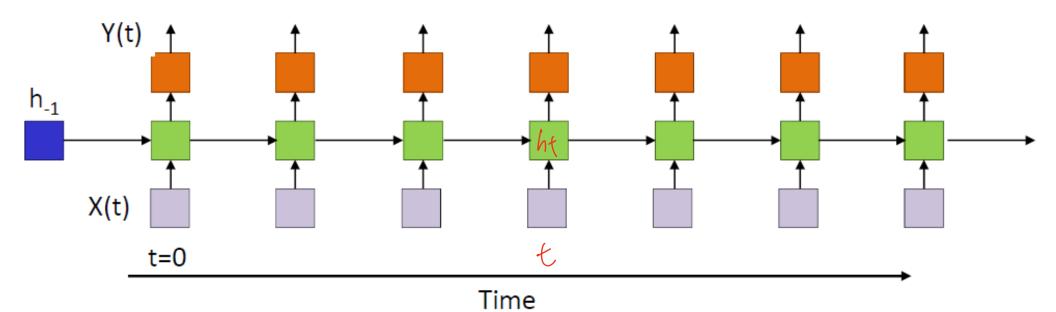
ced nentl

seg weule

State-Space Model

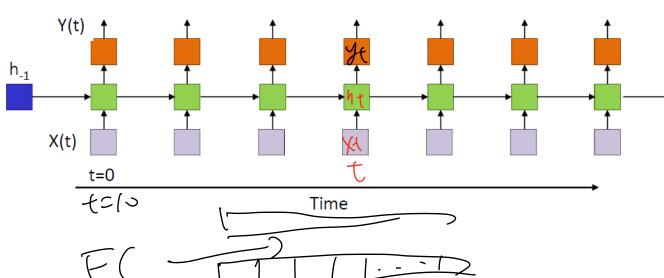
- h_t : hidden state
- X_t : input
- Y_t : output
- $\bullet Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- \check{h}_{-1} : initial state

•
$$h_{-1}$$
: initial state
$$(4) = (4)$$



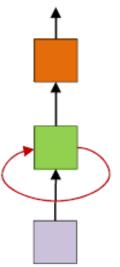
Recurrent Neural Network

- h_t : hidden state
- X_t : input
- Y_t : output
- $\bullet Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state



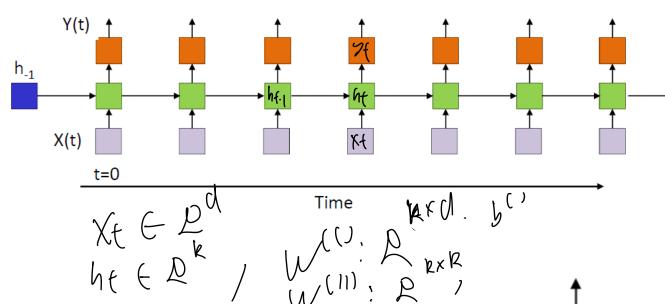
Fully-connect NN vs. RNN

- h_t : a vector summarizes all past inputs (a.k.a. "memory")
- h_{-1} affects the entire dynamics (typically set to zero)
- X_t affects all the outputs and states after t
- Y_t depends on $X_0, ..., X_t$



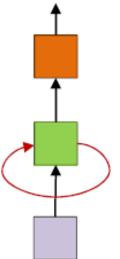
Recurrent Neural Network

- h_t : hidden state
- X_t : input
- Y_t : output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state

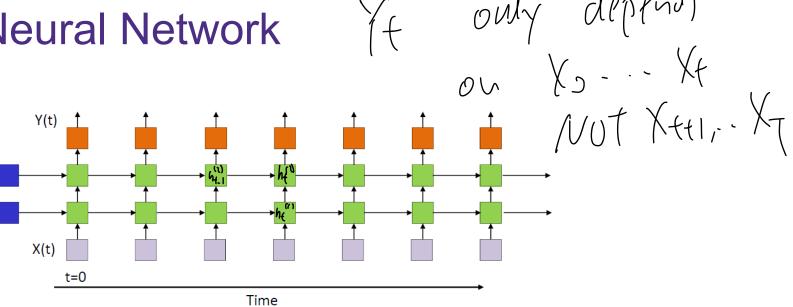


Fully-connect NN vs. RNN

- RNN can be viewed as repeated applying fully-connected NNs
- $Y_t = \sigma_2(W^{(2)}h_t + b^{(2)})$
- σ_1, σ_2 are activation functions (sigmoid, ReLU, tanh, etc)



Recurrent Neural Network

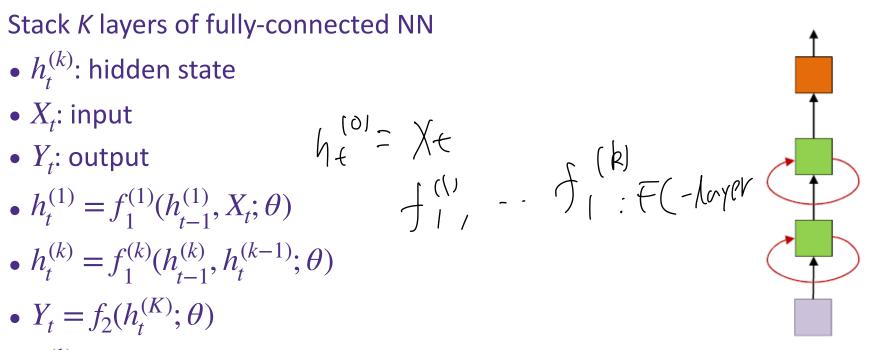


Stack K layers of fully-connected NN

- $h_t^{(k)}$: hidden state
- X_t : input

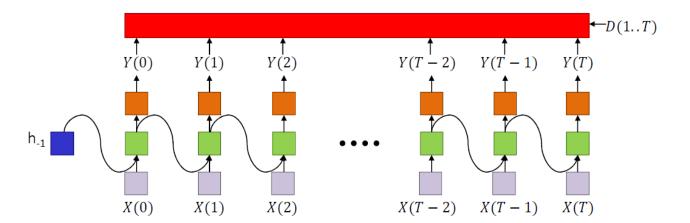
•
$$h_t^{(1)} = f_1^{(1)}(h_{t-1}^{(1)}, X_t; \theta)$$

- $h_t^{(k)} = f_1^{(k)}(h_{t-1}^{(k)}, h_t^{(k-1)}; \theta)$
- $\bullet \ Y_t = f_2(h_t^{(K)}; \theta)$
- $h^{(k)}$: initial states



Training Recurrent Neural Network

- h_t : hidden state
- X_t : input
- Y_t : output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state



• Data: $\{(X_t, D_t)\}_{t=1}^T$ (RNN can handle more general data format)

$$\bullet \ \operatorname{Loss} L(\theta) = \sum_{t=1}^T \mathscr{C}(Y_t, D_t)$$

- ullet Goal: learn heta by gradient-based method
 - Back propagation

Extensions

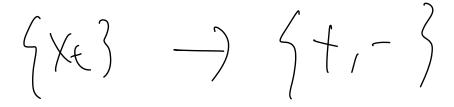
What if Y_t depends on the entire inputs?

- Biredictional RNN:
 - AN RNN for forward dependencies: t= 0,...,T
 - An RNN for backward dependencies: t= T,...0



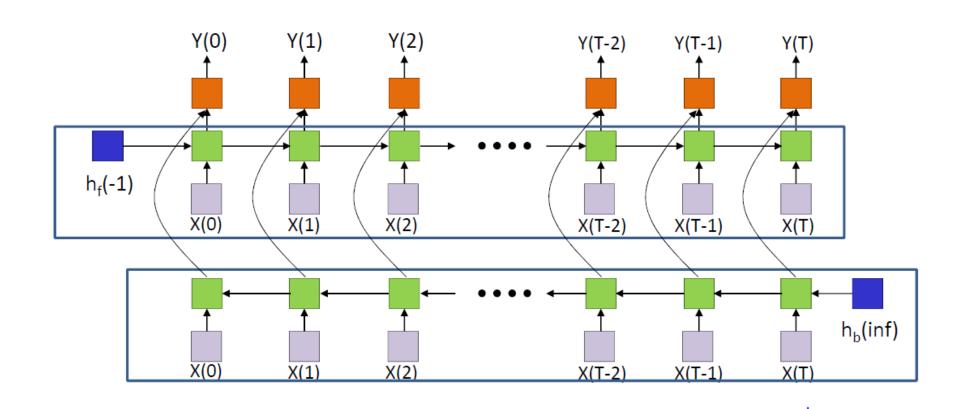
ht only departs

Extensions



RNN for sequence classification (sentiment analysis)

- $Y = \max Y_t$
- Cross-entropy loss



Practical issues of RNN

Linear RNN derivation
$$6(2) = 2$$

$$ht = W^{(1)}ht-1 + W^{(1)}Xt$$

$$hk = W^{(1)}Xk + W^{(1)}hk-1$$

$$= W^{(1)}Xk + W^{(1)}(W^{(1)}Xk-1 + W^{(1)}hk-2)$$

$$= W^{(1)}Xk + W^{(1)}(W^{(1)}Xk-1 + W^{(1)}hk-2)$$

$$= W^{(1)}Xk + W^{(1)}(W^{(1)}Xk-1 + W^{(1)}) + W^{(1)}Xk-1$$

$$= W^{(1)}Xk + W^{(1)}(W^{(1)}Xk-1 + W^{(1)}Xk-1 +$$

Practical issues of RNN: training

21: pve-a (1i valion

Gradient explosion and gradient vanishing

$$\angle k(\theta) = \angle (YR_1DR)$$

gradient $\angle (W^{(1)})$
 exp large

 exp small

Techniques for avoiding gradient explosion

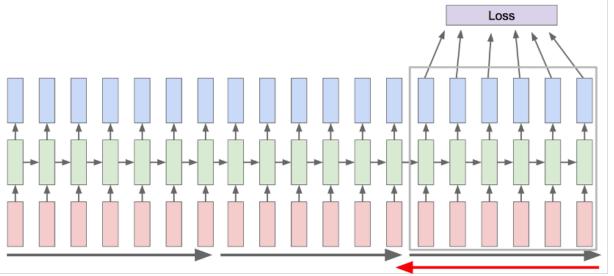
• Gradient clipping

threshold,

• Identity initialization

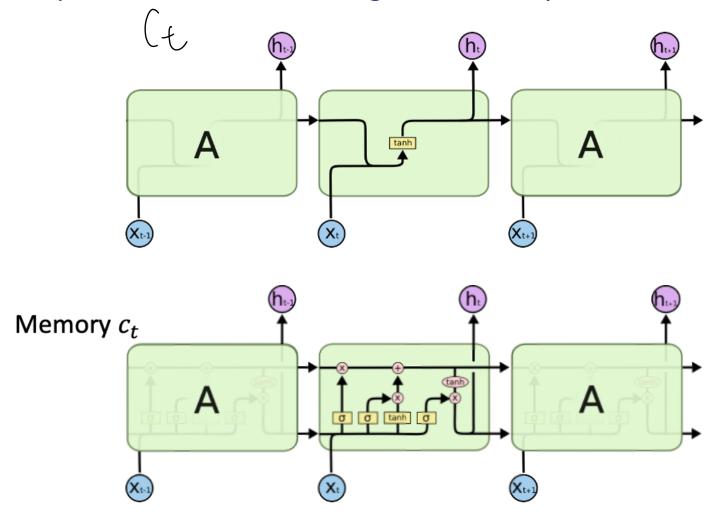
• Truncated backprop through time

Only backprop for a few steps



Preserve Long-Term Memory

- Difficult for RNN to preserve long-term memory
 - The hidden state h_t is constantly being written (short-term memory)
 - Use a separate cell to maintain long-term memory

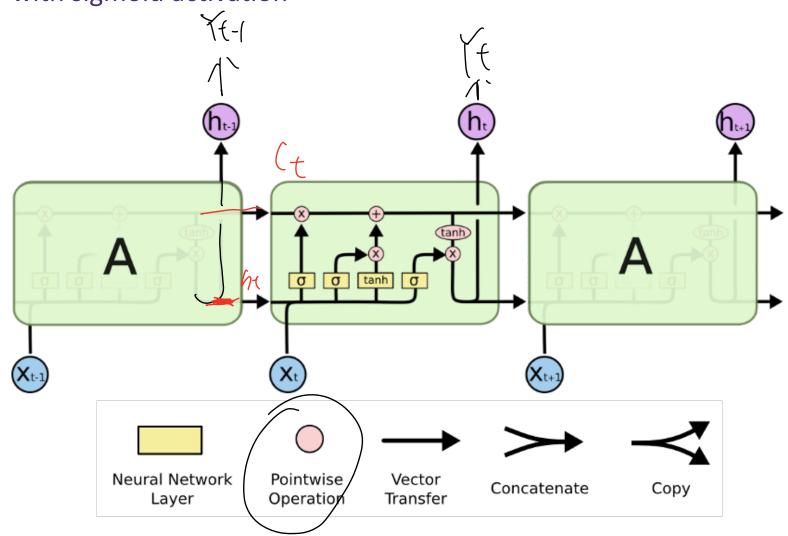


 $\mathcal{O} = \begin{pmatrix} \alpha_i & \rho_i \\ \vdots \\ \alpha_i & \rho_d \end{pmatrix}$

LSTM (Hochreitcher & Schmidhuber, '97)

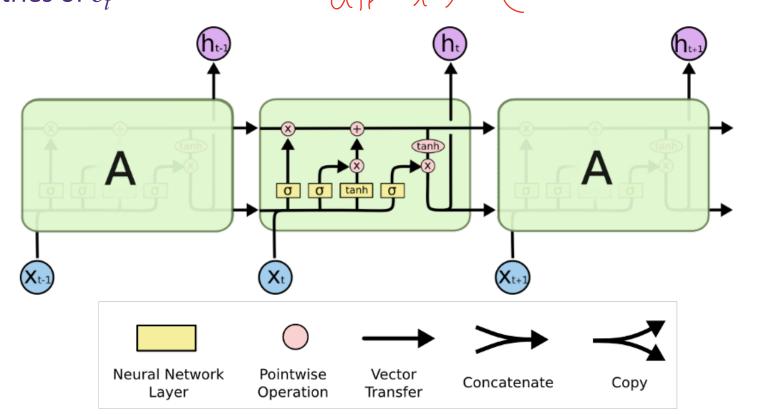
(1) two ch (1)

- RNN architecture for learning long-term dependencies
- σ : layer with sigmoid activation



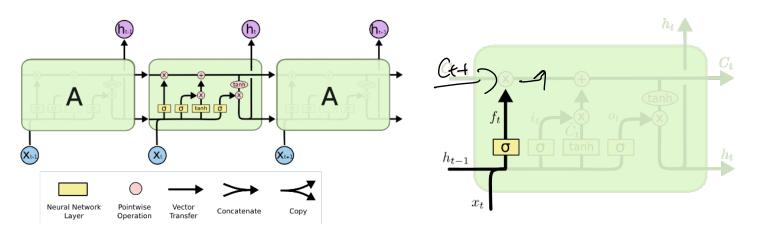
LSTM (Hochreitcher & Schmidhuber, '97)

- Ve (to doment ([o,]] • Core idea: maintain separate state h_t and cell c_t (memory)
- h_t : full update every step
- c_t : only partially update through gates
 - \bullet σ layer outputs importance ([0,1]) for each entry and only modify those use losisti entries of c_t



Forget gate f_t

- ullet f_t outputs whether we want to "forget" things in c_t
 - Compute $c_{t-1} \odot f_t$ (element-wise)
 - $f_t(i) \rightarrow 0$: want to forget $c_t(i)$
 - $f_t(i) \rightarrow 1$: we want to keep the information in $c_t(i)$

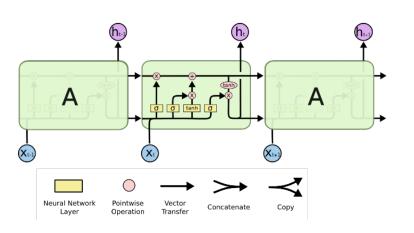


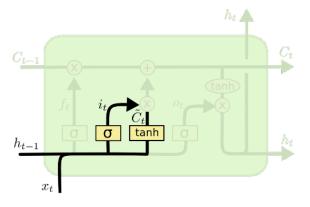
$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

$$\int g \cdot g \cdot f \cdot ($$

Input gate i_t

- i_t extracts useful information from X_t to update memory
 - \tilde{c}_t : information from X_t to update memory
 - ullet i_t : which dimension in the memory should be updated by X_t
 - $i_t(j) \rightarrow 1$: we want to use the information in $\tilde{c}_t(j)$ to update memory
 - $i_t(\mathbf{j}) \rightarrow 0$: $\tilde{c}_t(j)$ should not contribute to memory



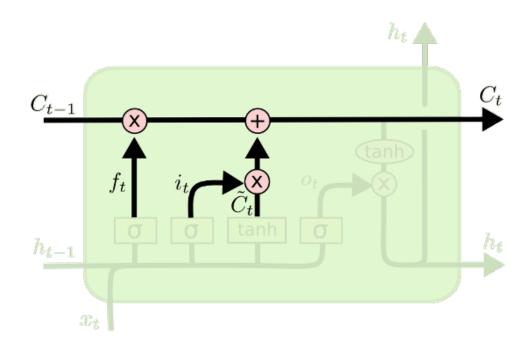


$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

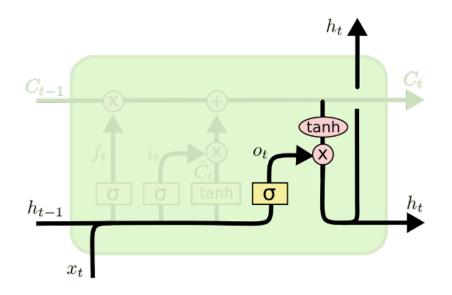
Memory update

- $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$
- f_t forget gate; i_t input date
- $f_t \odot c_{t-1}$: drop useless information in old memory
- $i_t \odot \tilde{c}_t$: add selected new information from current input



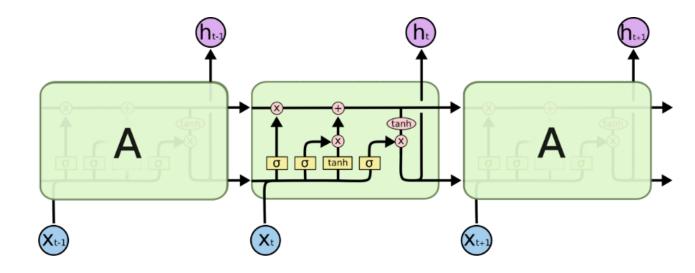
Output gate o_t

- Next hidden state $h_t = o_t \odot \tanh(c_t)$
 - $tanh(c_t)$: non-linear transformation over all past information
 - o_t : choose important dimensions for the next state
 - $o_t(j) \to 1$: tanh $(c_t(j))$ is important for the next state
 - $o_t(j) \to 0$: $tanh(c_t(j))$ is not important



$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

- $h_t = o_t \odot \tanh(c_t)$
- $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$
- $Y_t = g(h_t)$



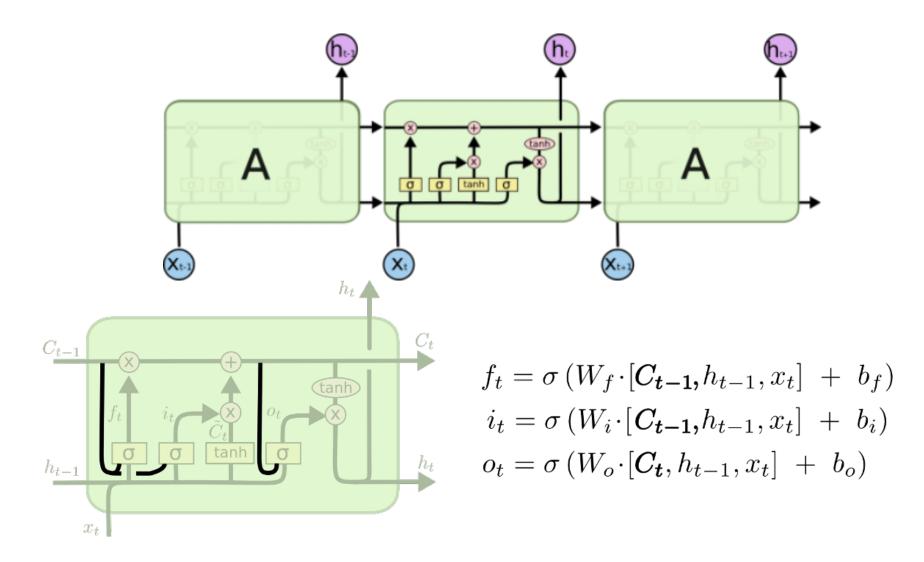
Remarks:

- 1. No more matrix multiplications for c_t
- 2. LSTM does not have guarantees for gradient explosion/vanishing
- 3. LSTM is the dominant architecture for sequence modeling from '13 '16.
- 4. Why tanh

LSTM Variant

Peephold Connections (Gers & Schmidhuber '00)

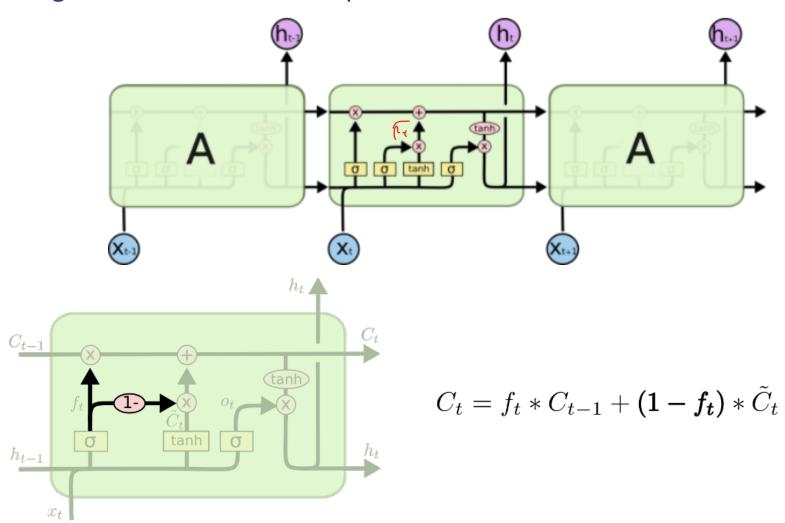
• Allow gates to take in c_t information



LSTM Variant

Simplified LSTM

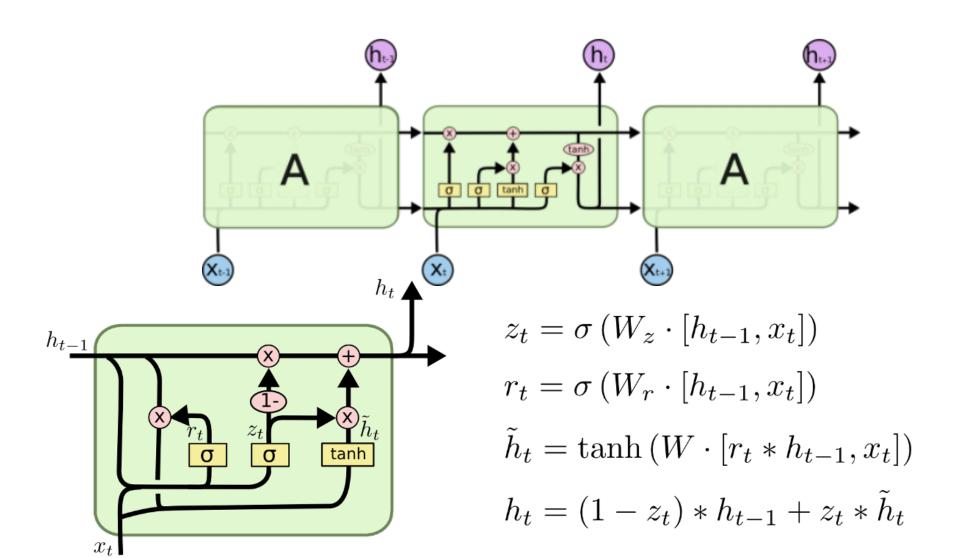
- Assume $i_t = 1 f_t$
- Only two gates are needed: fewer parameters



LSTM Variant

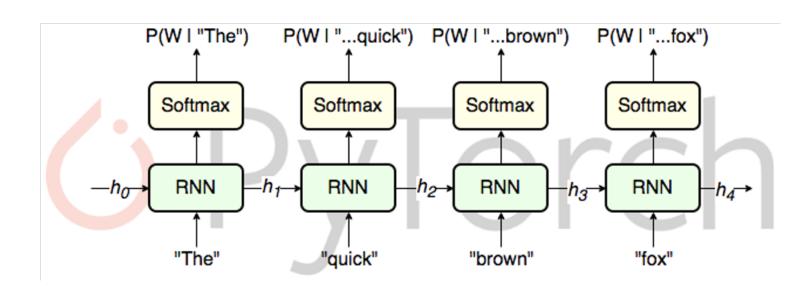
Gated Recurrent Unit (GRU, Cho et al. '14)

• Merge h_t and c_t : much fewer parameters



LSTM application: language model

- Autoregressive language model: $P(X; \theta) = \prod_{t=1}^{L} P(X_t \mid X_{i < t}; \theta)$
 - X: a sentence
 - Sequential generation
- LSTM language model
 - X_t : word at position t.
 - *Y_t*: softmax over all words
- Data: a collection of texts:
 - Wiki



LSTM application: text classification

Bi-dreictional LSTM and them run softmax on the final hidden state.

