
Recurrent Neural
Networks

Sequence Data

State-Space Model

• : hidden state
• : input
• : output
•
• : initial state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1

Recurrent Neural Network

• : hidden state
• : input
• : output
•
• : initial state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1

Fully-connect NN vs. RNN
• : a vector summarizes all past inputs (a.k.a. “memory”)
• affects the entire dynamics (typically set to zero)
• affects all the outputs and states after
• depends on

ht
h−1
Xt t
Yt X0, …, Xt

Recurrent Neural Network

• : hidden state
• : input
• : output
•
• : initial state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1

Fully-connect NN vs. RNN
• RNN can be viewed as repeated applying fully-connected NNs
•

•
• are activation functions (sigmoid, ReLU, tanh, etc)

ht = σ1(W (1)Xt + W (11)ht−1 + b(1))
Yt = σ2(W (2)ht + b(2))
σ1, σ2

Recurrent Neural Network

Stack K layers of fully-connected NN

• : hidden state

• : input
• : output

•

•

•

• : initial states

h(k)
t

Xt
Yt

h(1)
t = f (1)

1 (h(1)
t−1, Xt; θ)

h(k)
t = f (k)

1 (h(k)
t−1, h(k−1)

t ; θ)
Yt = f2(h(K)

t ; θ)
h(k)

−1

Training Recurrent Neural Network

• : hidden state
• : input
• : output
•
• : initial state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1

• Data: (RNN can handle more general data format)

• Loss

• Goal: learn by gradient-based method
• Back propagation

{(Xt, Dt)}T
t=1

L(θ) =
T

∑
t=1

ℓ(Yt, Dt)

θ

Extensions

What if depends on the entire inputs?
• Biredictional RNN:

• AN RNN for forward dependencies: t= 0,…,T
• An RNN for backward dependencies: t= T,…0

•

Yt

Yt = f2(hf
t , hb

t ; θ)

Extensions

RNN for sequence classification (sentiment analysis)

•

• Cross-entropy loss

Y = max
t

Yt

Practical issues of RNN

Linear RNN derivation

Practical issues of RNN: training

Gradient explosion and gradient vanishing

Techniques for avoiding gradient explosion

• Gradient clipping

• Identity initialization

• Truncated backprop through time
• Only backprop for a few steps

Preserve Long-Term Memory

• Difficult for RNN to preserve long-term memory
• The hidden state is constantly being written (short-term memory)
• Use a separate cell to maintain long-term memory

ht

Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, ’97)
• RNN architecture for learning long-term dependencies
• : layer with sigmoid activation σ

Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, ’97)
• Core idea: maintain separate state and cell (memory)
• : full update every step
• : only partially update through gates

• layer outputs importance () for each entry and only modify those
entries of

ht ct
ht
ct

σ [0,1]
ct

Long Short-Term Memory Network

Forget gate
• outputs whether we want to “forget” things in

• Compute (element-wise)
• : want to forget
• : we want to keep the information in

ft
ft ct

ct−1 ⊙ ft
ft(i) → 0 ct(i)
ft(i) → 1 ct(i)

Long Short-Term Memory Network

Input gate
• extracts useful information from to update memory

• : information from to update memory
• : which dimension in the memory should be updated by

• : we want to use the information in to update memory
• : should not contribute to memory

it
it Xt

c̃t Xt
it Xt

it(j) → 1 c̃t(j)
it(t) → 0 c̃t(j)

Long Short-Term Memory Network

Memory update
•
• forget gate; input date
• : drop useless information in old memory
• : add selected new information from current input

ct = ft ⊙ ct−1 + it ⊙ c̃t
ft it
ft ⊙ ct−1
it ⊙ c̃t

Long Short-Term Memory Network

Output gate
• Next hidden state

• : non-linear transformation over all past information
• : choose important dimensions for the next state

• is important for the next state
• is not important

ot
ht = ot ⊙ tanh(ct)

tanh(ct)
ot

ot(j) → 1 : tanh(ct(j))
ot(j) → 0 : tanh(ct(j))

Long Short-Term Memory Network

•
•
•

ht = ot ⊙ tanh(ct)
ct = ft ⊙ ct−1 + it ⊙ c̃t
Yt = g(ht)

Remarks:
1. No more matrix multiplications for
2. LSTM does not have guarantees for gradient explosion/vanishing
3. LSTM is the dominant architecture for sequence modeling from ’13 - ’16.
4. Why tanh

ct

LSTM Variant

Peephold Connections (Gers & Schmidhuber ’00)
• Allow gates to take in information ct

LSTM Variant

Simplified LSTM
• Assume
• Only two gates are needed: fewer parameters

it = 1 − ft

LSTM Variant

Gated Recurrent Unit (GRU, Cho et al. ’14)
• Merge and : much fewer parameters ht ct

LSTM application: language model

• Autoregressive language model:
• : a sentence
• Sequential generation

• LSTM language model
• : word at position .
• : softmax over all words

• Data: a collection of texts:
• Wiki

P(X; θ) = ΠL
t=1P(Xt ∣ Xi<t; θ)

X

Xt t
Yt

LSTM application: text classification

Bi-dreictional LSTM and them run softmax on the final hidden state.

