
Recurrent Neural 
Networks



Sequence Data



State-Space Model

• : hidden state 
• : input 
• : output 
•  
• : initial state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1



Recurrent Neural Network

• : hidden state 
• : input 
• : output 
•  
• : initial state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1

Fully-connect NN vs. RNN 
• : a vector summarizes all past inputs (a.k.a. “memory”) 
•  affects the entire dynamics (typically set to zero) 
•  affects all the outputs and states after  
•  depends on 

ht
h−1
Xt t
Yt X0, …, Xt



Recurrent Neural Network

• : hidden state 
• : input 
• : output 
•  
• : initial state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1

Fully-connect NN vs. RNN 
• RNN can be viewed as repeated applying fully-connected NNs 
•  

•  
•  are activation functions (sigmoid, ReLU, tanh, etc)

ht = σ1(W (1)Xt + W (11)ht−1 + b(1))
Yt = σ2(W (2)ht + b(2))
σ1, σ2



Recurrent Neural Network

Stack K layers of fully-connected NN 

• : hidden state 

• : input 
• : output 

•  

•  

•  

• : initial states

h(k)
t

Xt
Yt

h(1)
t = f (1)

1 (h(1)
t−1, Xt; θ)

h(k)
t = f (k)

1 (h(k)
t−1, h(k−1)

t ; θ)
Yt = f2(h(K)

t ; θ)
h(k)

−1



Training Recurrent Neural Network

• : hidden state 
• : input 
• : output 
•  
• : initial state

ht
Xt
Yt
Yt, ht = f(ht−1, Xt; θ)
h−1

• Data:  (RNN can handle more general data format) 

• Loss  

• Goal: learn  by gradient-based method 
• Back propagation

{(Xt, Dt)}T
t=1

L(θ) =
T

∑
t=1

ℓ(Yt, Dt)

θ



Extensions

What if  depends on the entire inputs? 
• Biredictional RNN: 

• AN RNN for forward dependencies: t= 0,…,T 
• An RNN for backward dependencies: t= T,…0 

•  

Yt

Yt = f2(hf
t , hb

t ; θ)



Extensions

RNN for sequence classification (sentiment analysis) 

•  

• Cross-entropy loss 

Y = max
t

Yt



Practical issues of RNN

Linear RNN derivation 



Practical issues of RNN: training

Gradient explosion and gradient vanishing 



Techniques for avoiding gradient explosion

• Gradient clipping 

• Identity initialization 

• Truncated backprop through time 
• Only backprop for a few steps 



Preserve Long-Term Memory

• Difficult for RNN to preserve long-term memory 
• The hidden state  is constantly being written (short-term memory) 
• Use a separate cell to maintain long-term memory 

ht



Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, ’97) 
• RNN architecture for learning long-term dependencies 
• : layer with sigmoid activation σ



Long Short-Term Memory Network

LSTM (Hochreitcher & Schmidhuber, ’97) 
• Core idea: maintain separate state  and cell  (memory) 
• : full update every step 
• : only partially update through gates 

•  layer outputs importance ( ) for each entry and only modify those 
entries of  

ht ct
ht
ct

σ [0,1]
ct



Long Short-Term Memory Network

Forget gate  
•  outputs whether we want to “forget” things in  

• Compute  (element-wise) 
• : want to forget  
• : we want to keep the information in  

ft
ft ct

ct−1 ⊙ ft
ft(i) → 0 ct(i)
ft(i) → 1 ct(i)



Long Short-Term Memory Network

Input gate  
•  extracts useful information from  to update memory 

• : information from  to update memory 
• : which dimension in the memory should be updated by  

• : we want to use the information in  to update memory 
• :  should not contribute to memory 

it
it Xt

c̃t Xt
it Xt

it( j) → 1 c̃t( j)
it(t) → 0 c̃t( j)



Long Short-Term Memory Network

Memory update 
•  
•  forget gate;  input date 
• : drop useless information in old memory 
• : add selected new information from current input 

ct = ft ⊙ ct−1 + it ⊙ c̃t
ft it
ft ⊙ ct−1
it ⊙ c̃t



Long Short-Term Memory Network

Output gate  
• Next hidden state  

• : non-linear transformation over all past information 
• : choose important dimensions for the next state 

•  is important for the next state 
•  is not important 

ot
ht = ot ⊙ tanh(ct)

tanh(ct)
ot

ot( j) → 1 : tanh(ct( j))
ot( j) → 0 : tanh(ct( j))



Long Short-Term Memory Network

•  
•  
•  

ht = ot ⊙ tanh(ct)
ct = ft ⊙ ct−1 + it ⊙ c̃t
Yt = g(ht)

Remarks: 
1. No more matrix multiplications for  
2. LSTM does not have guarantees for gradient explosion/vanishing 
3. LSTM is the dominant architecture for sequence modeling from ’13 - ’16. 
4. Why tanh 

ct



LSTM Variant

Peephold Connections (Gers & Schmidhuber ’00) 
• Allow gates to take in  information ct



LSTM Variant

Simplified LSTM 
• Assume  
• Only two gates are needed: fewer parameters 

it = 1 − ft



LSTM Variant

Gated Recurrent Unit (GRU, Cho et al. ’14) 
• Merge  and : much fewer parameters ht ct



LSTM application: language model

• Autoregressive language model:  
• : a sentence 
• Sequential generation 

• LSTM language model 
• : word at position . 
• : softmax over all words 

• Data: a collection of texts: 
• Wiki 

P(X; θ) = ΠL
t=1P(Xt ∣ Xi<t; θ)

X

Xt t
Yt



LSTM application: text classification

Bi-dreictional LSTM and them run softmax on the final hidden state. 


