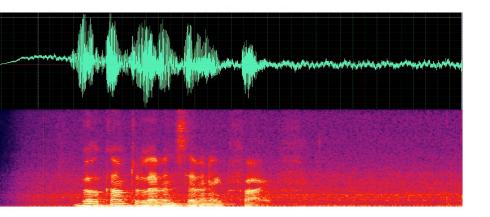
Recurrent Neural Networks

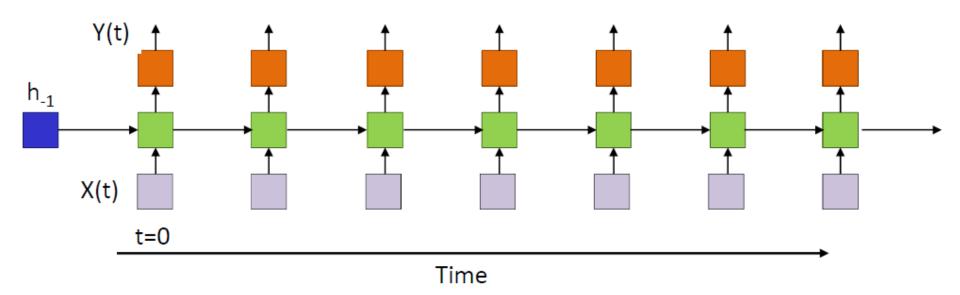
Sequence Data



检测语言 英语 中文 德语 ✓	← 中文(简体) 英	语 日语 🗸
Deep learning is a popular area in Al.	G × 深度学习是Alf	的热门领域。 ☆
	Shēndù xuéxí shì Al de	rèmén lǐngyù.
. ↓	38 / 5000	

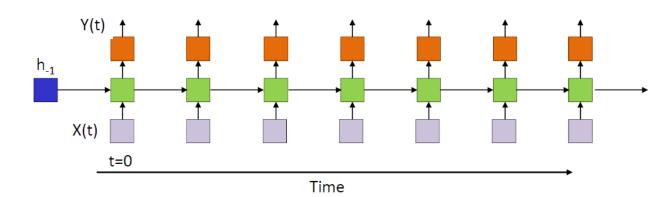
State-Space Model

- h_t : hidden state
- X_t : input
- *Y_t*: output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state



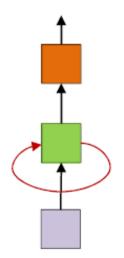
Recurrent Neural Network

- h_t : hidden state
- X_t: input
- *Y_t*: output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state



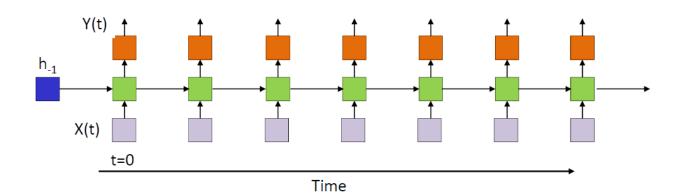
Fully-connect NN vs. RNN

- h_t : a vector summarizes all past inputs (a.k.a. "memory")
- h_{-1} affects the entire dynamics (typically set to zero)
- X_t affects all the outputs and states after t
- Y_t depends on X_0, \ldots, X_t



Recurrent Neural Network

- h_t : hidden state
- X_t : input
- *Y_t*: output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state



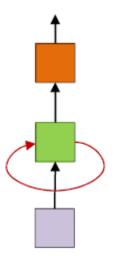
Fully-connect NN vs. RNN

• RNN can be viewed as repeated applying fully-connected NNs

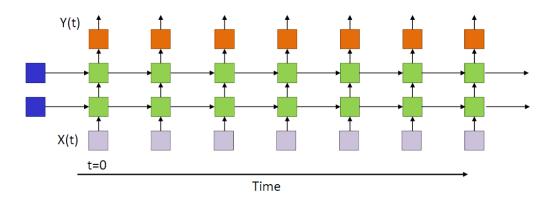
•
$$h_t = \sigma_1 (W^{(1)}X_t + W^{(11)}h_{t-1} + b^{(1)})$$

•
$$Y_t = \sigma_2(W^{(2)}h_t + b^{(2)})$$

• σ_1, σ_2 are activation functions (sigmoid, ReLU, tanh, etc)

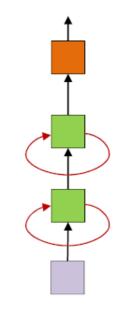


Recurrent Neural Network



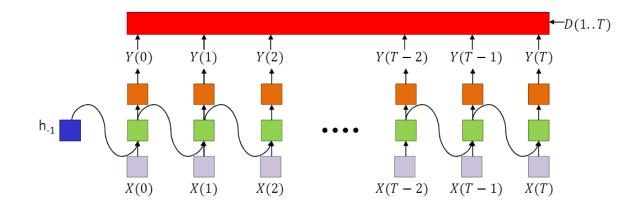
Stack K layers of fully-connected NN

- $h_{t}^{(k)}$: hidden state
- X_t : input
- Y_t : output
- $h_t^{(1)} = f_1^{(1)}(h_{t-1}^{(1)}, X_t; \theta)$ • $h_t^{(k)} = f_1^{(k)}(h_{t-1}^{(k)}, h_t^{(k-1)}; \theta)$
- $Y_t = f_2(h_t^{(K)}; \theta)$
- $h_{-1}^{(k)}$: initial states



Training Recurrent Neural Network

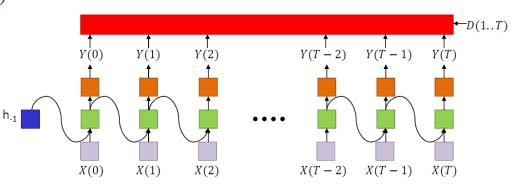
- h_t : hidden state
- X_t : input
- *Y_t*: output
- $Y_t, h_t = f(h_{t-1}, X_t; \theta)$
- h_{-1} : initial state



- Data: $\{(X_t, D_t)\}_{t=1}^T$ (RNN can handle more general data format) • Loss $L(\theta) = \sum_{t=1}^T \ell(Y_t, D_t)$
- Goal: learn θ by gradient-based method
 - Back propagation

Back Propagation Through Time

- $h_t = \sigma_1(W^{(1)}X_t + W^{(11)}h_{t-1} + b^{(1)})$
- $Y_t = \sigma_2(W^{(2)}h_t + b^{(2)})$
- $Z_t^{(1)}$: pre-activation of hidden state ($h_t = \sigma_1(Z_t^{(1)})$)
- $Z_t^{(2)}$: pre-activation of output $(Y_t = \sigma_2(Z_t^{(2)}))$



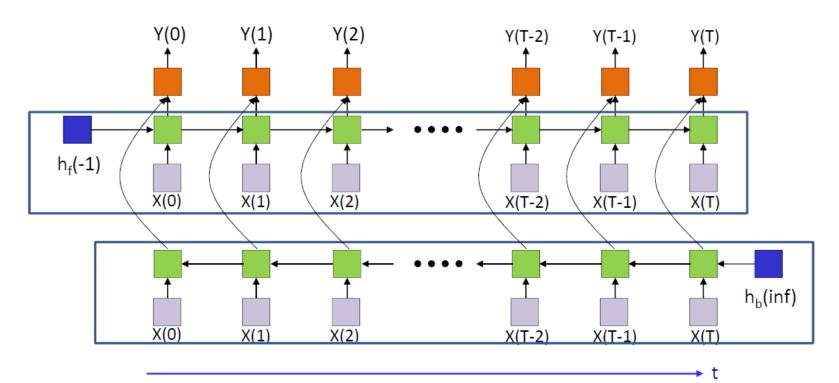
Back Propagation Through Time

Back Propagation Through Time

Extensions

What if Y_t depends on the entire inputs?

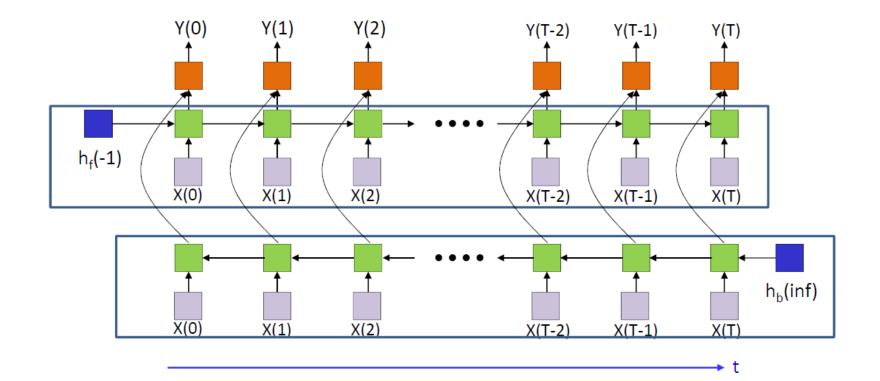
- Biredictional RNN:
 - AN RNN for forward dependencies: t= 0,...,T
 - An RNN for backward dependencies: t= T,...0
 - $Y_t = f_2(h_t^f, h_t^b; \theta)$



Extensions

RNN for sequence classification (sentiment analysis)

- $Y = \max Y_t$
- Cross-entropy loss



Practical issues of RNN

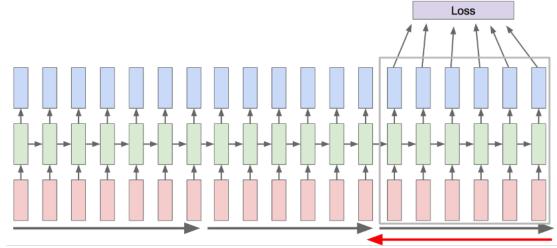
Linear RNN derivation

Practical issues of RNN: training

Gradient explosion and gradient vanishing

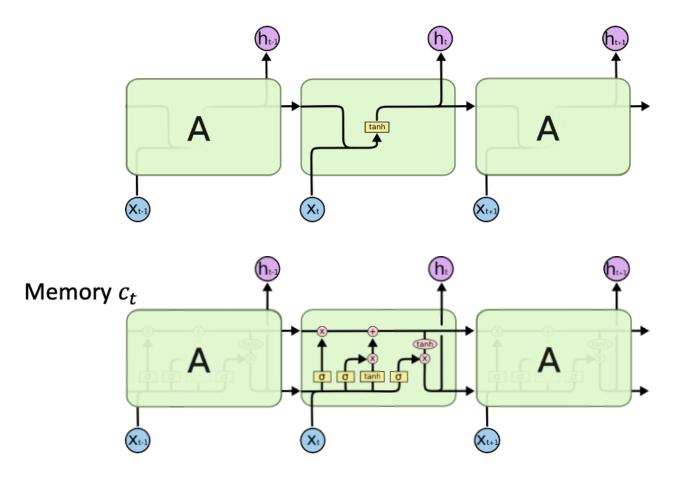
Techniques for avoiding gradient explosion

- Gradient clipping
- Identity initialization
- Truncated backprop through time
 - Only backprop for a few steps



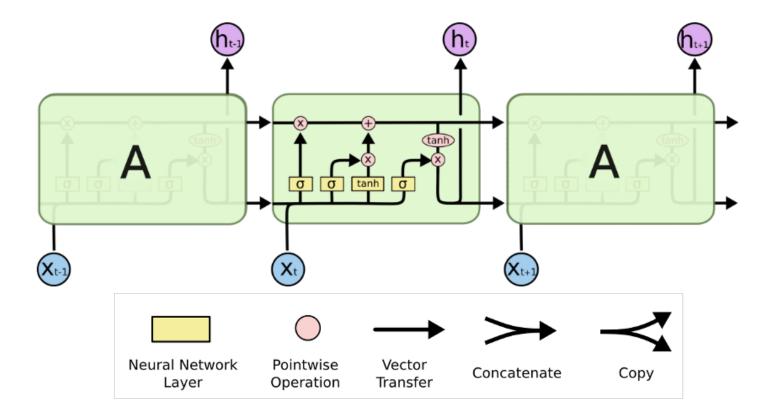
Preserve Long-Term Memory

- Difficult for RNN to preserve long-term memory
 - The hidden state h_t is constantly being written (short-term memory)
 - Use a separate cell to maintain long-term memory



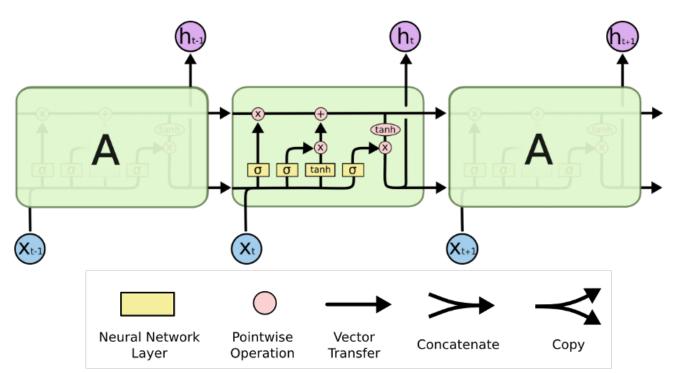
LSTM (Hochreitcher & Schmidhuber, '97)

- RNN architecture for learning long-term dependencies
- σ : layer with sigmoid activation



LSTM (Hochreitcher & Schmidhuber, '97)

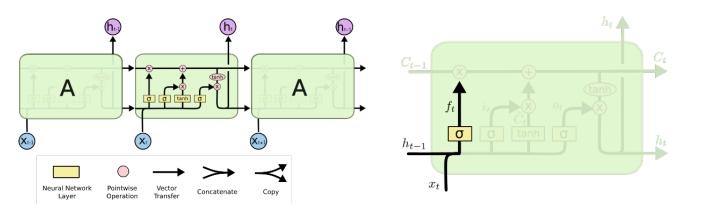
- Core idea: maintain separate state h_t and cell c_t (memory)
- *h_t*: full update every step
- *c_t*: only *partially* update through gates
 - σ layer outputs importance ([0,1]) for each entry and only modify those entries of c_t



Forget gate f_t

• f_t outputs whether we want to "forget" things in c_t

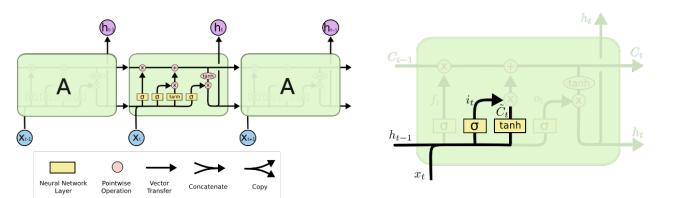
- Compute $c_{t-1} \odot f_t$ (element-wise)
- $f_t(i) \rightarrow 0$: want to forget $c_t(i)$
- $f_t(i) \rightarrow 1$: we want to keep the information in $c_t(i)$



$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Input gate i_t

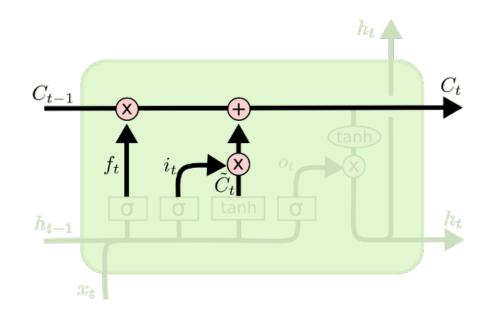
- i_t extracts useful information from X_t to update memory
 - \tilde{c}_t : information from X_t to update memory
 - i_t : which dimension in the memory should be updated by X_t
 - $i_t(j) \rightarrow 1$: we want to use the information in $\tilde{c}_t(j)$ to update memory
 - $i_t(t) \rightarrow 0$: $\tilde{c}_t(j)$ should not contribute to memory



 $i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$ $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$

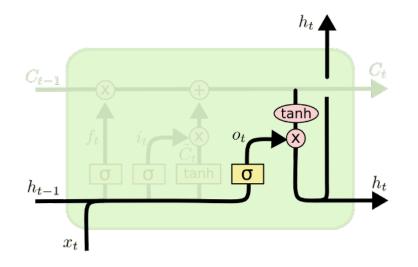
Memory update

- $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$
- f_t forget gate; i_t input date
- $f_t \odot c_{t-1}$: drop useless information in old memory
- $i_t \odot \tilde{c}_t$: add selected new information from current input



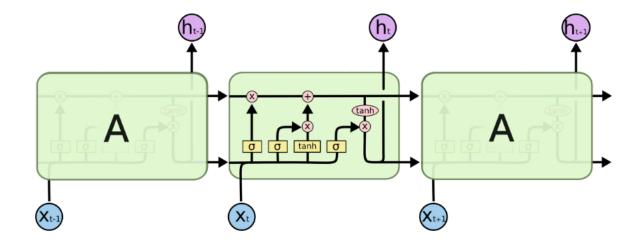
Output gate o_t

- Next hidden state $h_t = o_t \odot \tanh(c_t)$
 - $tanh(c_t)$: non-linear transformation over all past information
 - *o_t*: choose important dimensions for the next state
 - $o_t(j) \rightarrow 1$: tanh $(c_t(j))$ is important for the next state
 - $o_t(j) \rightarrow 0$: tanh $(c_t(j))$ is not important



$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

- $h_t = o_t \odot \tanh(c_t)$
- $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$
- $Y_t = g(h_t)$



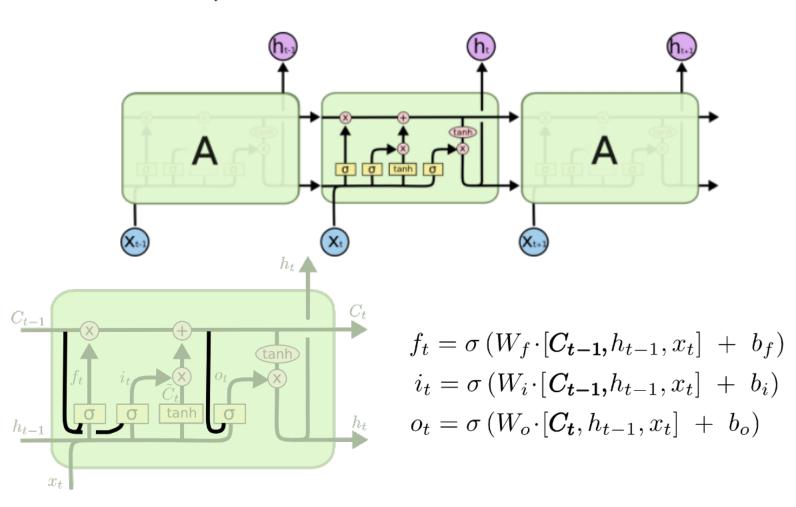
Remarks:

- 1. No more matrix multiplications for c_t
- 2. LSTM does not have guarantees for gradient explosion/vanishing
- 3. LSTM is the dominant architecture for sequence modeling from '13 '16.
- 4. Why tanh

LSTM Variant

Peephold Connections (Gers & Schmidhuber '00)

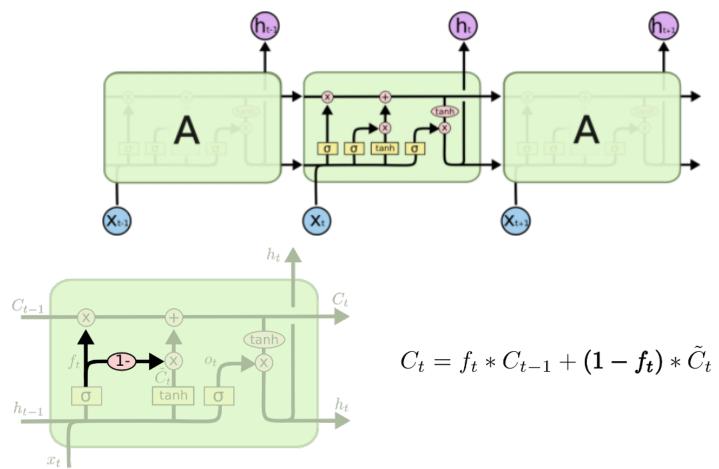
• Allow gates to take in c_t information



LSTM Variant

Simplified LSTM

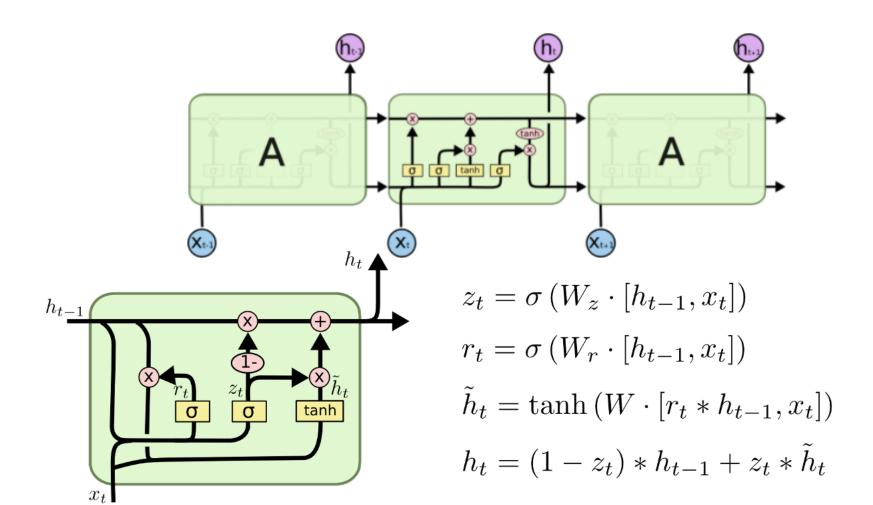
- Assume $i_t = 1 f_t$
- Only two gates are needed: fewer parameters



LSTM Variant

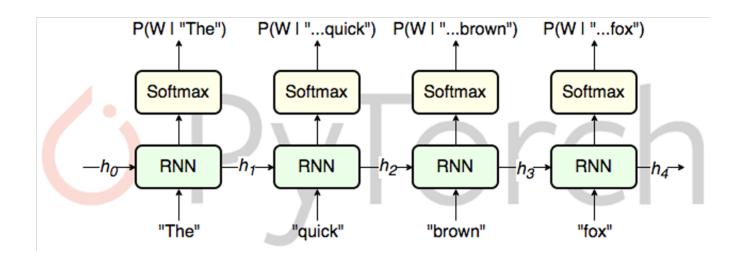
Gated Recurrent Unit (GRU, Cho et al. '14)

• Merge h_t and c_t : much fewer parameters



LSTM application: language model

- Autoregressive language model: $P(X; \theta) = \prod_{t=1}^{L} P(X_t \mid X_{i < t}; \theta)$
 - X: a sentence
 - Sequential generation
- LSTM language model
 - *X_t*: word at position *t*.
 - *Y_t*: softmax over all words
- Data: a collection of texts:
 - Wiki



LSTM application: text classification

Bi-dreictional LSTM and them run softmax on the final hidden state.

