
Generalization Theory
for Deep Learning

Basic version: finite hypothesis class

Finite hypothesis class: with probability over the choice
of a training set of size , for a bounded loss , we have

1 − δ
n ℓ

sup
f∈ℱ

1
n

n

∑
i=1

ℓ(f(xi), yi) − 𝔼(x,y)∼D [ℓ(f(x), y)] = O (log |ℱ | + log 1/δ
n)

VC-Dimension

Motivation: Do we need to consider every classifier in ?
Intuitively, pattern of classifications on the training set should
suffice. (Two predictors that predict identically on the training set
should generalize similarly).

Let be a class of binary classifiers.

The growth function is defined as:

.

The VC dimension of is defined as:

ℱ

ℱ = {f : ℝd → {+1, − 1}}

Πℱ : ℕ → 𝔽
Πℱ(m) = max

(x1,x2,…,xm)
{(f(x1), f(x2), …, f(xm)) ∣ f ∈ ℱ}

ℱ
VCdim(ℱ) = max{m : Πℱ(m) = 2m} .

VC-dimension Generalization bound

Theorem (Vapnik-Chervonenkis): with probability over
the choice of a training set, for a bounded loss , we have

Examples:
• Linear functions: VC-dim = O(dimension)
• Neural network: VC-dimension of fully-connected net with width

 and layers is (Bartlett et al., ’17).

1 − δ
ℓ

sup
f∈ℱ

1
n

n

∑
i=1

ℓ(f(xi), yi) − 𝔼(x,y)∼D [ℓ(f(x), y)] = O (VCdim(ℱ)log n + log 1/δ
n)

W H Θ̃ (WH)

Problems with VC-dimension bound

1. In over-parameterized regime, bound >> 1.
2. Cannot explain the random noise phenomenon:

• Neural networks that fit random labels and that fit true labels
have the same VC-dimension.

PAC Bayesian Generalization Bounds

Setup: Let be a prior over function in class , let be the
posterior (after algorithm’s training).

Theorem: with probability over the choice of a training set,
for a bounded loss , we have

P ℱ Q

1 − δ
ℓ

sup
f∈ℱ

1
n

n

∑
i=1

ℓ(f(xi), yi) − 𝔼(x,y)∼D [ℓ(f(x), y)] = O (KL(Q ∣ ∣ P) + log 1/δ
n)

If f is
standard Gaussian

can compute Q

learnedNIV
parameter

Gaussian

Rademacher Complexity

Intuition: how well can a classifier class fit random noise?

(Empirical) Rademacher complexity: For a training set
, and a class , denote:

 .

where (Rademacher R.V.).

(Population) Rademacher complexity:

.

S = {x1, x2, …, xn} ℱ
R̂n(S) = 𝔼σ sup

f∈ℱ

n

∑
i=1

σi f(xi)

σi ∼ Unif{+1, − 1}

Rn = 𝔼S [R̂n(s)]

Rademacher Complexity Generalization Bound

Theorem: with probability over the choice of a training set,
for a bounded loss , we have

and

1 − δ
ℓ

sup
f∈ℱ

1
n

n

∑
i=1

ℓ(f(xi), yi) − 𝔼(x,y)∼D [ℓ(f(x), y)] = O (R̂n

n
+ log 1/δ

n)

sup
f∈ℱ

1
n

n

∑
i=1

ℓ(f(xi), yi) − 𝔼(x,y)∼D [ℓ(f(x), y)] = O (Rn

n
+ log 1/δ

n)

Use Rademacher complexity theory, we can obtain a

generalization bound where are
labels, and is the kernel (e.g., NTK) matrix.

O(y⊤(H*)−1y/n) y ∈ ℝn n
H* ∈ ℝn×n

Kernel generalization bound

VC dimension

Norm-based Rademacher complexity bound

Theorem: If the activation function is is -Lipschitz. Let

then where
 is the input data matrix.

σ ρ
ℱ = {x ↦ WH+1σ(Whσ(⋯σ(W1x)⋯),∥WT

h ∥1,∞ ≤ B ∀h ∈ [H]}
Rn(𝒮) ≤ ∥X⊤∥2,∞(2ρB)H+1 2 ln d

X = [x1, …, xn] ∈ ℝd×n

11Willing III m Wil ill

11 X'lanes y.gl Xfiilll2

Comments on generalization bounds

• When plugged in real values, the bounds are rarely non-trivial
(i.e., smaller than 1)

• “Fantastic Generalization Measures and Where to Find them”
by Jiang et al. ’19 : large-scale investigation of the correlation of
extant generalization measures with true generalization.

Image credits to Andrej Risteski

Comments on generalization bounds

• Uniform convergence may be unable to explain generalization
of deep learning [Nagarajan and Kolter, ’19]
• Uniform convergence: a bound for all
• Exists example that 1) can generalize, 2) uniform

convergence fails.

• Rates:
• Most bounds: .
• Local Rademacher complexity: .

f ∈ ℱ

1/ n
1/n

linear regressionbias Variance

Separation between NN and kernel

• For approximation and optimization, neural network has no
advantage over kernel. Why NN gives better performance:
generalization.

• [Allen-Zhu and Li ’20] Construct a class of functions such that
 for some :

• no kernel is sample-efficient;
• Exists a neural network that is sample-efficient.

ℱ
y = f(x) f ∈ ℱ

at least exp all
sample

poly di

Separation between NN and kernel

De Kernel method
is linear method

with an embedding

2d 21 Hilbert space

it turns an element fEH into a

prediction function of Cf 4M
I fix

themethofusessamlesssxil.fi
Xited

observes 941

ft span 441 13,1

example augmin Yi clxis toit
7117112

te span semi

Separation between NN and kernel

Then
a class of functions

c 212

and a distributionmover ad sit

i Kernel method if it satisfies that
c E C given yi Xi

it Exum CCN ct day
then you need 4721mbar

ii simple procedure not kernel that

can output true C 0 loss aslong

as used

Ian show NN 41 can

simulate this procedure

Separation between NN and kernel

Pf M uniform distribution over g 1,13
intold 2d

C.fm I Xs f ch id

not part
in choose a basis

Y
t

Y ski e ez ed

if it 5,4 1
if Yi l

know whether i is in 5 or not

identity 5 learn Cg
I

Separation between NN and kernel

Parti
is a basis for f 1 1,131 2

w.vn t distribution µ

f zui.CI CE C
sics.tl ymLCs a.cf'a go

it 54

by symmetry
1 if 5 5

Goal Exum Cs x Ct i

1 since ft span 01 11

Eg aid Xi ten
aic4

HC4 Xi 41 17

Ʃ Xi f s
ICED

Separation between NN and kernel

Exam Cs Ct 4413

xm C x Ecaffaitis IX

1 É 45715 Ee
Uni 5

cross terms
o

by
assumption error ty

1 anise y thorns2dt

Esa Et ask.is
2stg

Separation between NN and kernel

Notations A 20th
As i xi.si

n11IA

nx2dott dias
Ai 5 di sumutsu.ee

D 1 A
zdxadotvankatm.nu

I ai.si Xi s

l Sst Feta 78.5 5

Isffs ty

Separation between NN and kernel

r diag r or r off diagonal

11s'll I Ʃ eigenter's t
s has at most eigenvalues

consider subspace with eigenuates

which has dimension at lean d

XE subspace

1152 112
diashxts.tl

z7Ildiasax1l2Hxll2
subspace span 31 112 311411220

dim 2d rants
d

434 24

Double descent

• There are cases where the model gets bigger, yet the (test!)
loss goes down, sometimes even lower than in the classical
“under-parameterized” regime.

• Complexity: number of parameters.

Belkin, Hsu, Ma, Mandal ‘18

701st

Double descent

Widespread phenomenon, across architectures (Nakkiran et al.
’19):

Double descent

Widespread phenomenon, across architectures (Nakkiran et al.
’19):

Double descent

Widespread phenomenon, also in kernels (can be formally proved
in some concrete settings [Mei and Montanari ’20]), random
forests, etc.

Double descent

Also in other quantities such as train time, dataset, etc (Nakkiran
et al. ’19):

7T

Double descent

Optimal regularization can mitigate double descent [Nakkiran et
al. ’21]:

I with

Double descent

Optimal regularization can mitigate double descent [Nakkiran et
al. ’21]:

Implicit Regularization

Implicit Bias

Margin:

• Linear predictors:
• Gradient descent, mirror descent, natural gradient descent,

steepest descent, etc maximize margins with respect to
different norms.

• Non-linear:
• Gradient descent maximizes margin for homogeneous neural

networks.
• Low-rank matrix sensing: gradient descent finds a low-rank

solution.

linear a ftp.YI.nYicuxismiIYiflwsxi
if f is Hill homogeneous w̅ f f j

