Generalization Theory
for Deep Learning
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Basic version: finite hypothesis class

Finite hypothesis class: with probability 1 — ¢ over the choice
of a training set of size n, for a bounded loss £, we have
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VC-Dimension

Motivation: Do we need to consider every classifier in & ?

Intuitively, pattern of classifications on the training set should
suffice. (Two predictors that predict identically on the training set
should generalize similarly).

Let F = {f: RY - {+1, — 1]} be a class of binary classifiers.

The growth function I1g : N — [Fis defined as:
Npom) = max | {(fx). f), ... f,)) | f€ FY |
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The VC dimension of & is defined as:
VCdim(F) = max{m : [Ig(m) = 2"} .



VC-dimension Generalization bound

Theorem (Vapnik-Chervonenkis): with probability 1 — o over
the choice of a training set, for a bounded loss £, we have
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Examples:

 Linear functions: VC-dim = O(dimension)

* Neural network: VC-dimension of fully-connected net with width
W and H layers is ® (WH) (Bartlett et al., ’17).
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Problems with VC-dimension bound

1. In over-parameterized regime, bound >> 1.
2. Cannot explain the random noise phenomenon:

 Neural networks that fit random labels and that fit true labels
have the same VC-dimension.

Practice: gradient descent
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PAC Bayesian Generalization Bounds

Setup: Let P be a prior over function in class &, let Q be the
posterior (after algorithm’s training).

Theorem: with probability 1 — 6 over the choice of a training set,
for a bounded loss £, we have
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Rademacher Complexity

Intuition: how well can a classifier class fit random noise?

(Empirical) Rademacher complexity: For a training set

S = {X{,%y, ..., X, }, and a class &, denote:
n
R(S) = E,sup ) 6,f(x).
fEQ‘r‘ i=1

where 6; ~ Unif{+1, — 1} (Rademacher R.V.).

(Population) Rademacher complexity:
R = E, [Rn(s)].



Rademacher Complexity Generalization Bound

Theorem: with probability 1 — 6 over the choice of a training set,
for a bounded loss £, we have
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Kernel generalization bound

Use Rademacher complexity theory, we can obtain a

generalization bound 0(\/yT(H*)_1y/n) where y € R" are n
labels, and H* € R"" is the kernel (e.g., NTK) matrix.
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Norm-based Rademacher complexity bound

Theorem: If the activation function is o is p-Lipschitz. Let
F = {x > Wy o(W,o(---c(Wx)--)IW/ ||, ,» < BVh € [H]}

then R(S) < ||XT||2 (2pB)1*14/2 Ind where
=[x, ..., x,] € R®"is the input data matrix.



Comments on generalization bounds

* When plugged in real values, the bounds are rarely non-trivial
(i.e., smaller than 1)

“Fantastic Generalization Measures and Where to Find them”
by Jiang et al. '19 : large-scale investigation of the correlation of
extant generalization measures with true generalization.
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Comments on generalization bounds

« Uniform convergence may be unable to explain generalization
of deep learning [Nagarajan and Kolter, "19]

» Uniform convergence: a bound for all f € &#

« Exists example that 1) can generalize, 2) uniform
convergence fails.

* Rates:

« Most bounds:l/\/z.
« Local Rademacher complexity: 1/n.



Separation between NN and kernel

* For approximation and optimization, neural network has no
advantage over kernel. Why NN gives better performance:
generalization.

- [Allen-Zhu and Li '20] Construct a class of functions & such that
y = f(x) for some f € F:
* no kernel is sample-efficient;
» Exists a neural network that is sample-efficient.
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Double descent

under-fitting . over- fitting

. Test risk

under-parameterized

Test risk
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(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

Belkin, Hsu, Ma, Mandal ‘18

* There are cases where the model gets bigger, yet the (test!)
loss goes down, sometimes even lower than in the classical
“under-parameterized” regime.

« Complexity: number of parameters.



Double descent

Widespread phenomenon, across architectures (Nakkiran et al.
'19):
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(a) CIFAR-100. There is a peak in test error even (b) CIFAR-10. There is a “plateau” in test error
with no label noise. around the interpolation point with no label noise,
which develops into a peak for added label noise.



Double descent

Widespread phenomenon, across architectures (Nakkiran et al.
'19):
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Double descent

Widespread phenomenon, also in kernels (can be formally proved
in some concrete settings [Mei and Montanari "20]), random
forests, etc.
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Double descent

Also in other quantities such as train time, dataset, etc (Nakkiran
et al. '19):
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Figure 2: Left: Test error as a function of model size and train epochs. The horizontal line corre-
sponds to model-wise double descent—varying model size while training for as long as possible. The
vertical line corresponds to epoch-wise double descent, with test error undergoing double-descent
as train time increases. Right Train error of the corresponding models. All models are Resnet18s
trained on CIFAR-10 with 15% label noise, data-augmentation, and Adam for up to 4K epochs.



Double descent

Optimal regularization can mitigate double descent [Nakkiran et
al. '21]:
Effect of Regularization: CNNs on CIFAR-100

0.9 - = Unregularized
—— A =0.0005
—— A =0.001
08 —— A =0.003
A =0.005
A =0.01
Optimally Regularized
o 0.7
=
L
3
— 0.6 e
0.5
H__—_'_-‘_________,_._—-0
0.4 -
0 10 20 30 40 50 60

CNN Model Size (width)



Double descent

Optimal regularization can mitigate double descent [Nakkiran et

al. '21]:

Test Error for Regularized Random Features
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Implicit Regularization

Different optimization algorithm
=» Different bias in optimum reached
=>» Different Inductive bias
=>» Different generalization properties




Implicit Bias

Margin:

 Linear predictors:

« Gradient descent, mirror descent, natural gradient descent,
steepest descent, etc maximize margins with respect to
different norms.

 Non-linear:

« Gradient descent maximizes margin for homogeneous neural
networks.

« Low-rank matrix sensing: gradient descent finds a low-rank
solution.



