Generalization Theory for Deep Learning

Basic version: finite hypothesis class

Finite hypothesis class: with probability $1 - \delta$ over the choice of a training set of size n, for a bounded loss ℓ , we have

$$\sup_{f \in \mathscr{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) - \mathbb{E}_{(x, y) \sim D} \left[\ell(f(x), y) \right] \right| = O\left(\sqrt{\frac{\log |\mathscr{F}| + \log 1/\delta}{n}}\right)$$

VC-Dimension

Motivation: Do we need to consider **every** classifier in \mathscr{F} ? Intuitively, **pattern of classifications** on the training set should suffice. (Two predictors that predict identically on the training set should generalize similarly).

Let
$$\mathcal{F} = \{f : \mathbb{R}^d \to \{+1, -1\}\}$$
 be a class of binary classifiers.

The growth function $\Pi_{\mathscr{F}}:\mathbb{N}\to\mathbb{F}$ is defined as:

$$\Pi_{\mathcal{F}}(m) = \max_{(x_1, x_2, \dots, x_m)} \left| \left\{ (f(x_1), f(x_2), \dots, f(x_m)) \mid f \in \mathcal{F} \right\} \right|.$$

The VC dimension of \mathcal{F} is defined as:

$$VCdim(\mathcal{F}) = \max\{m : \Pi_{\mathcal{F}}(m) = 2^m\}.$$

VC-dimension Generalization bound

Theorem (Vapnik-Chervonenkis): with probability $1 - \delta$ over the choice of a training set, for a bounded loss ℓ , we have

$$\sup_{f \in \mathscr{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \mathscr{C}(f(x_i), y_i) - \mathbb{E}_{(x, y) \sim D} \left[\mathscr{C}(f(x), y) \right] \right| = O\left(\sqrt{\frac{\mathsf{VCdim}(\mathscr{F}) \log n + \log 1/\delta}{n}}\right)$$

Examples:

- Linear functions: VC-dim = O(dimension)
- Neural network: VC-dimension of fully-connected net with width W and H layers is $\Theta(WH)$ (Bartlett et al., '17).

Problems with VC-dimension bound

- 1. In over-parameterized regime, bound >> 1.
- 2. Cannot explain the random noise phenomenon:
 - Neural networks that fit random labels and that fit true labels have the same VC-dimension.

PAC Bayesian Generalization Bounds

Setup: Let P be a prior over function in class \mathcal{F} , let Q be the posterior (after algorithm's training).

Theorem: with probability $1 - \delta$ over the choice of a training set, for a bounded loss ℓ , we have

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) - \mathbb{E}_{(x, y) \sim D} \left[\ell(f(x), y) \right] \right| = O\left(\sqrt{\frac{KL(Q \mid \mid P) + \log 1/\delta}{n}}\right)$$

Rademacher Complexity

Intuition: how well can a classifier class fit random noise?

(Empirical) Rademacher complexity: For a training set $S = \{x_1, x_2, ..., x_n\}$, and a class \mathcal{F} , denote:

$$\hat{R}_n(S) = \mathbb{E}_{\sigma} \sup_{f \in \mathcal{F}} \sum_{i=1}^n \sigma_i f(x_i) .$$

where $\sigma_i \sim \text{Unif}\{+1, -1\}$ (Rademacher R.V.).

(Population) Rademacher complexity:

$$R_n = \mathbb{E}_S \left[\hat{R}_n(s) \right].$$

Rademacher Complexity Generalization Bound

Theorem: with probability $1-\delta$ over the choice of a training set, for a bounded loss ℓ , we have

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) - \mathbb{E}_{(x,y) \sim D} \left[\ell(f(x), y) \right] \right| = O\left(\frac{\hat{R}_n}{n} + \sqrt{\frac{\log 1/\delta}{n}}\right)$$

and

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) - \mathbb{E}_{(x, y) \sim D} \left[\ell(f(x), y) \right] \right| = O\left(\frac{R_n}{n} + \sqrt{\frac{\log 1/\delta}{n}}\right)$$

Kernel generalization bound

Use Rademacher complexity theory, we can obtain a generalization bound $O(\sqrt{y^{\top}(H^*)^{-1}y/n})$ where $y \in \mathbb{R}^n$ are n labels, and $H^* \in \mathbb{R}^{n \times n}$ is the kernel (e.g., NTK) matrix.

Portion of random labels

Norm-based Rademacher complexity bound

Theorem: If the activation function is σ is ρ -Lipschitz. Let $\mathscr{F} = \{x \mapsto W_{H+1}\sigma(W_h\sigma(\cdots\sigma(W_1x)\cdots),\|W_h^T\|_{1,\infty} \leq B \,\forall h \in [H]\}$ then $R_n(\mathscr{S}) \leq \|X^T\|_{2,\infty} (2\rho B)^{H+1} \sqrt{2\ln d}$ where $X = [x_1,\ldots,x_n] \in \mathbb{R}^{d\times n}$ is the input data matrix.

Comments on generalization bounds

- When plugged in real values, the bounds are rarely non-trivial (i.e., smaller than 1)
- "Fantastic Generalization Measures and Where to Find them" by Jiang et al. '19: large-scale investigation of the correlation of extant generalization measures with true generalization.

Comments on generalization bounds

- Uniform convergence may be unable to explain generalization of deep learning [Nagarajan and Kolter, '19]
 - Uniform convergence: a bound for all $f \in \mathcal{F}$
 - Exists example that 1) can generalize, 2) uniform convergence fails.

Rates:

- Most bounds: $1/\sqrt{n}$.
- Local Rademacher complexity: 1/n.

 For approximation and optimization, neural network has no advantage over kernel. Why NN gives better performance: generalization.

- [Allen-Zhu and Li '20] Construct a class of functions \mathcal{F} such that y = f(x) for some $f \in \mathcal{F}$:
 - no kernel is sample-efficient;
 - Exists a neural network that is sample-efficient.

Belkin, Hsu, Ma, Mandal '18

- There are cases where the model gets bigger, yet the (test!) loss goes down, sometimes even lower than in the classical "under-parameterized" regime.
- Complexity: number of parameters.

Widespread phenomenon, across architectures (Nakkiran et al. '19):

(a) CIFAR-100. There is a peak in test error even with no label noise.

(b) **CIFAR-10.** There is a "plateau" in test error around the interpolation point with no label noise, which develops into a peak for added label noise.

Widespread phenomenon, across architectures (Nakkiran et al. '19):

Widespread phenomenon, also in kernels (can be formally proved in some concrete settings [Mei and Montanari '20]), random forests, etc.

Also in other quantities such as train time, dataset, etc (Nakkiran et al. '19):

Figure 2: **Left:** Test error as a function of model size and train epochs. The horizontal line corresponds to model-wise double descent-varying model size while training for as long as possible. The vertical line corresponds to epoch-wise double descent, with test error undergoing double-descent as train time increases. **Right** Train error of the corresponding models. All models are Resnet18s trained on CIFAR-10 with 15% label noise, data-augmentation, and Adam for up to 4K epochs.

Optimal regularization can mitigate double descent [Nakkiran et al. '21]:

Optimal regularization can mitigate double descent [Nakkiran et al. '21]:

a) Test Classification Error vs. Number of Trainng Samples.

(b) Test Classification Error vs. Model Size (Number of Random Features).

Implicit Regularization

Different optimization algorithm

- → Different bias in optimum reached
 - → Different Inductive bias
 - → Different generalization properties

Implicit Bias

Margin:

- Linear predictors:
 - Gradient descent, mirror descent, natural gradient descent, steepest descent, etc maximize margins with respect to different norms.
- Non-linear:
 - Gradient descent maximizes margin for homogeneous neural networks.
 - Low-rank matrix sensing: gradient descent finds a low-rank solution.