CSE 543 Simon Du

CSE543: Deep Learning

Instructor: <u>Simon Du</u>

Teaching Assistant: Yancheng Liang, Siting Li, Yiping Wang

Course Website (contains all logistic information): https://courses.cs.washington.edu/ courses/cse543/24au/

Questions: Ed Discussion

Announcements: Canvas

Homework: Canvas

CSE543: Deep Learning

What this class is:

- Fundamentals of DL: Neural network architecture, approximation properties, optimization, generalization, generative models, representation learning
- Preparation for further learning / research: the field is fastmoving, you will be able to apply the fundamentals and teach yourself the latest

What this class is not:

- An easy course: mathematically easy
- A survey course: laundry list of algorithms
- An application course: implementation of different architectures on different datasets

Prerequisites

- Working knowledge of:
 - Linear algebra
 - Vector calculus
 - Probability and statistics
 - Algorithms
 - Machine leanring (CSE 446/546)
- Mathematical maturity
- "Can I learn these topics concurrently?"

- Time: Tuesday and Thursday 11:30 AM 12:50 PM
- CSE2 G01 or Zoom (see website for the schedule)
- Slides + handwritten notes (e.g., proofs)
- Zoom link on Canvas
- Tentative schedule on course website

Homework (40%)

- 2 homework (20%+20%)
 - Each contains both theoretical questions and programming questions
 - Related to course materials
 - Collaboration okay but must write who you collaborated with. You must write, submit, and understand your answers and code.
 - Submit on Canvas
 - Must be typed
 - Two late days
 - Tentative timeline:
 - □ HW 1 due: 10/24
 - □ HW 2 due: 11/7

Course Project (60%)

- Group of 2 4.
- Topic: literature review (state-of-the-art) or original research.
- Post on Ed Discussion to form teams.
- Some potential topics are in listed on Canvas. OK to do a project on listed.
- You can work on a project related to your research.
- Proposal (due: 10/10): 5%
 - Format: NeurIPS Latex format, ~1 1.5 pages
- Presentations on (12/3 and 12/5 on Zoom): 20%
- Final report (due: 12/13): **35%**
 - Format: NeurIPS Latex format, ~8 pages
- Submit on Canvas

Possible Topics

- Approximation properties
- Advanced optimization methods
- Optimization theory for deep learning
- Generalization theory for deep learning
- Deep reinforcement learning
- Implicit regularization
- Meta-learning
- Robustness
- Neural network compression
- Pre-training, fine-tuning, RLHF
- Deep learning application

• ...

Communication Chanels

Announcements

- Canvas
- questions about class, homework help
 - Ed Discussion
 - Office hours:
 - □ Simon Du: Tu 10:00 11:00 AM, CSE2 312
 - □ Yancheng Liang: W 13:00 14:00 PM, on Zoom
 - □ Siting Li: Tu 16:00 17:00, CSE2 151
 - □ Yiping Wang: W 16:00 17:00, CSE2 151
 - Regrade requests / Personal concerns:
 - Email to instructor or TAs

Topic 1: Review (Today)

- ML Review: training, generalization
- Neural network basics: fully-connected neural network, gradient descent

Topic 2: Approximation Theory

- Why neural networks can express the (regression, classification, ...) function you want?
- Construction of such desired neural networks
- Universal approximation theorem

Topic 3: Optimization

- Review: Back-propagation
- Auto-differentiation
- Advanced optimizers: momentum (Nesterov acceleration), adaptive method (AdaGrad, Adam)
- Techniques for improving optimization: batch-norm, layernorm, ..
- Theory: global convergence of gradient of overparameterized neural networks
- Neural Tangent Kernel

Topic 4: Generalization

- Measures of generalization
- Double descent
- Techniques for improving generalization
- Generalization theory beyond VC-dimension
- Implicit regularization
- Why NN outperforms kernel

Topic 5: Architecture

- Convolutional neural network
- Recurrent neural network
 - LSTM
- Attention-based neural network
 - Transformer
- General framework

Topic 6: Representation Learning / Pre-Training

- Multi-task representation learning
- Auto-regressive pre-training
- Multi-modal learning
- Contrastive learning
- Meta-learning
- Data
- Theory

Topic 7: Generative Models

- Generative adversarial network
- Variational Auto-Encoder
- Energy-based models
- Normalizing flows
- Diffusion models

ML uses past data to make predictions

Supervised Learning Process

Collect a dataset

Decide on a **model**

Find the function which fits the data best Choose a loss function Pick the function which minimizes loss on data

Use function to make prediction on new examples

Neural Networks

Single Node

Sigmoid (logistic) activation function:

: $g(z) = \frac{1}{1 + e^{-z}}$

Neural Network

 $a_i^{(j)}$ = "activation" of unit *i* in layer *j* $\Theta^{(j)}$ = weight matrix stores parameters from layer *j* to layer *j* + 1

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

If network has s_j units in layer j and s_{j+1} units in layer j+1, then $\Theta^{(j)}$ has dimension $s_{j+1} \times (s_j+1)$.

$$\Theta^{(1)} \in \mathbb{R}^{3 \times 4} \qquad \Theta^{(2)} \in \mathbb{R}^{1 \times 4}$$

Slide by Andrew Ng

Multi-layer Neural Network - Binary Classification

:
$$\widehat{y} = g(\Theta^{(L)}a^{(L)})$$

$$L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$
$$g(z) = \frac{1}{1 + e^{-z}} \qquad \begin{array}{c} \text{Binary} \\ \text{Logistic} \\ \text{Regression} \end{array}$$

Multi-layer Neural Network - Binary Classification

:
$$\widehat{y} = g(\Theta^{(L)}a^{(L)})$$

$$L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$

$$\sigma(z) = \max\{0, z\} \quad g(z) = \frac{1}{1 + e^{-z}} \quad \begin{array}{l} \text{Binary} \\ \text{Logistic} \\ \text{Regression} \end{array}$$

Multiple Output Units: One-vs-Rest

Pedestrian

Car

Motorcycle

 $h_{\Theta}(\mathbf{x}) \in \mathbb{R}^{K}$

Truck

Multi-class Logistic Regression

 $h_{\Theta}(\mathbf{x}) \approx \begin{vmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{vmatrix}$

when truck

We want:

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

when pedestrian

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0\\ 1\\ 0\\ 0 \end{bmatrix}$$

when car

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$$

when motorcycle

Multi-layer Neural Network - Regression

 $\widehat{y} = \Theta^{(L)} a^{(L)}$

$$L(y,\widehat{y}) = (y - \widehat{y})^2$$

$$\sigma(z) = \max\{0, z\}$$
 Regression

Gradient Descent: $\Theta^{(l)} \leftarrow \Theta^{(l)} - \eta \nabla_{\Theta^{(l)}} L(y, \widehat{y}) \qquad \forall l$

 $\Theta^{(l)} \leftarrow \Theta^{(l)} - \eta \nabla_{\Theta^{(l)}} L(y, \widehat{y})$ Gradient Descent: $\forall l$

Seems simple enough, why are packages like PyTorch, Tensorflow, Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation

2. Convenient libraries

3. GPU support

Gradient Descent:

Seems simple enough, Theano, Cafe, MxNet s

class Net(nn.Module):

1. Automatic differ

```
2. Convenient libra
```

def __init__(self): super(Net, self).__init_() # 1 input image channel, 6 output channels, 3x3 square convolution *# kernel* self.conv1 = nn.Conv2d(1, 6, 3)self.conv2 = nn.Conv2d(6, 16, 3)# an affine operation: y = Wx + bself.fc1 = nn.Linear(16 * 6 * 6, 120) # 6*6 from image dimension self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x): # Max pooling over a (2, 2) window $x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))$ # If the size is a square you can only specify a single number x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x)return x

```
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update
```