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1 Classical approximations

1.1 1D Approximation

Theorem 1. Let g : [0, 1] → R, and ρ-Lipschitz. For any ϵ > 0, 2-layer neural network f with ⌈ρϵ ⌉
nodes, there exists a threshold activation function σ(z) : z 7→ 1[z ≥ 1] such that

sup
x∈[0,1]

|f(x)− g(x)| ≤ ϵ

Proof idea Divide the [0, 1] interval into equal length of ϵ
ρ sub-intervals. Then construct a

piece-wise constant function f on each interval to approximate our target function g, which can be
represented by a 2-layer neural network with a threshold activation function.

Proof. Define m := ⌈ρϵ ⌉, and xi :=
(i−1)ϵ

ρ for i ∈ {0, . . . ,m − 1}, and a0 = g(0), ai = g(xi) −
g(xi−1), and lastly define our neural network f(x) :=

∑m−1
i=0 ai1[x − xi ≥ 0]. This is saying that

if x < x1, all except x0 is 0. So f(x) = a0 = g(x0). If x1 ≤ x < x2, f(x) = g(x1). Thus, on each
sub-interval, this constant function will equal to part of the target function applies to the left of
the interval. Then for any x ∈ [0, 1], letting xi be the largest index so that xi ≤ x,

|g(x)− f(x)| = |g(x)− f(xi)| where xi ≤ x and closest to x on the left

≤ |g(x)− g(xi)|+ |g(xi)− f(xi)| by triangle inequality

≤ ρ|x− xi| by Lipschitzness of g

≤ ρ · ϵ
ρ

= ϵ.

Note: the length of the sub-interval depends on Lipschitzness of the target function. If target
function is smooth, then we don’t need many sub-intervals, and vice versa.

1.2 Multivariate Approximation

Theorem 2. Let g be a continuous function that satisfies ||x − x′||∞ ≤ δ ⇒ |g(x) − g(x′)| ≤ ϵ
for any pairs of input x, x′ (Lipschitzness). Then there exists a 3-layer ReLU neural network with
O( 1

δd
) nodes that satisfy ∫

[0,1]d
|f(x)− g(x)|dx = ||f − g||1 ≤ ϵ
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Proof Idea The proof idea is similar to the 1D special case. Step 1: we can partition the
whole [0, 1]d continuous space into sub-spaces Ri. So that the overall function g(x) on [0, 1]d

can be represented by a linear combination of multiple activations functions x 7→ 1Ri(x), that is
h(x) =

∑
i αi1Ri(x). Step 2: we show that such h can be approximated by a 2-layer NN, denoted

as f .

Proof. For Step 1, we first construct a partition {Ri}Ni=1 that for any two x, x′ ∈ Ri, ∥x−x′∥∞ ≤ δ.
Then by Lemma 3, it is easy to see that there exists some corresponding (α1, . . . , αN ) ∈ RN that,

∥g − h∥1 ≤ ϵ, where h =
N∑
i=1

αi1Ri

And therefore,

||f − g||1 ≤ ||f − h||1 + ||h− g||1 ≤ ||f − h||1 + ϵ

Now we start the proof for Step 2 to bound ||f − h||1. Formally, define f(x) =
∑N

i=1 αifi(x) where
the αi’s are the same as defined in h above. Then

||f − h||1 = ||
N∑
i=1

αi(1Ri − fi)||1 ≤
N∑
i=1

|αi|||1Ri − fi||1

Now we want to construct fi that such ||1Ri − fi|| ≤ ϵ∑N
i=1 |αi|

. Firstly, it is easy to see that when∑N
i=1 |αi| = 0, we have g(xi) = 0 for all i and |g(x) − 0| ≤ ϵ, so setting f = 0 always work.

Otherwise, when
∑N

i=1 |αi| ≠ 0, for each region Ri, we define Ri := [ai1b
i
1]× [ai2b

i
2]×· · · [aidbid], which

is a Cartesian product of 1-d intervals. Then it is easy to see that there exists a bump function
giγ(x) defined as in Def. 4 that

giγ(x) =


1 if x ∈ Ri = x ∈ [ai1, b

i
1]× · · · [aid, bid]

0 if x /∈ [ai1 − γ, bi1 + γ]× · · · [aid − γ, bid + γ]

[0, 1] otherwise

Since γ → 0, giγ → 1Ri by definition, so , ∃γi s.t. ||giγi − 1Ri ||1 ≤ ϵ∑
i |αi| . Therefore, choosing fi =

giγi satisfies the requirement.

Lemma 3 (Partition Lemma). let g, δ, ϵ be given. Under the same assumption of Theorem 2, we
have for any partition P of [0, 1]d, P = (R1, . . . , RN ) with all side length smaller than δ, there
exists (α1, . . . , αN ) ∈ RN such that

sup
x∈[0,1]d

|g(x)− h(x)| ≤ ϵ with h(x) :=

N∑
i=1

αi1Ri(x).

Proof. For each Ri, pick xi ∈ Ri that satisfies αi = g(xi). Therefore we have

sup
x∈[0,1]d

|g(x)− h(x)| = sup
i∈[N ]

sup
x∈Ri

|g(x)− h(x)|

= sup
i∈[N ]

sup
x∈Ri

(|g(x)− g(xi)|+ |g(xi)− h(x)|)

≤ ϵ+ 0 = ϵ
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Here the first term of the last inequality comes from the construct of partition and the fact that
||x− x′||∞ ≤ δ ⇒ |g(x)− g(x′)| ≤ ϵ. The second term comes from the definition of αi.

Definition 4 (Bump function). For some γ > 0 and a relu function σ, we define

gγ,j(z) = σ(
z − (aj − γ)

γ
)− σ(

z − aj
γ

)− σ(
z − bj
γ

) + σ(
z − (bj + γ)

γ
) 1-dim case

gγ(x) = σ(
d∑

j=1

gγ,j(x
j)− (d− 1)) d-dim case

2 Barron’s Theorem

Theorem 5. For any g : B1 → R where B1 = {x ∈ R : ∥x∥2 ≤ 1} is the unit ball, there exists a

3-layer neural network f with O
(
C2

ϵ

)
neurons and sigmoid activation function such that∫
B1

(f(x)− g(x))2dx ≤ ϵ

Proof Idea The overall proof ideas can be decomposed into three steps:

• Step 1: show any continuous function can be written as an infinite width neural network with
cosine-like activation functions. (Tool: Fourier representation)

• Step 2: Show that a function with a small Barron constant can be approximated by a con-
vex combination of a small number (finite width neural network) of cosine-like activation
functions. (Tool: subsampling / probabilistic method.)

• Step 3 Show that the cosine function can be approximated by sigmoid functions. (Tool:
classical approximation theory.

Proof. For Step 1, we will approximate any continuous function f(x) using infinite width NN by
Fourier representation. That is,

f̂(w) :=

∫
exp

(
−2πiw⊤x

)
f(x)dx (Fourier transform)

f(x) :=

∫
exp

(
2πiw⊤x

)
f̂(w)dw (inverse Fourier transform)

Now recall the definition of infinite NN as follows.

Definition 6. An infinite-wide neural network is defined by a signed measure ν over neuron weights
(w, b),

f(x) =

∫
w∈Rd,b∈R

σ
(
w⊤x+ b

)
dν(w, b).
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You can see that the inverse Fourier form is very close to this infinite NN, except that the inverse
Fourier transform has its activations over complex space. By using polar decomposition as shown
in Lemma 7, we can rewrite the representation as

f(x) = f(0) +

∫
Rd

|f̂(w)| (cos (bw + ⟨w, x⟩)− cos (bw))︸ ︷︷ ︸
cos-like activation functions

dw

Now in Step 2, we will approximate this
∫
Rd |f̂(w)| (cos (bw + ⟨w, x⟩)− cos (bw)) dw by a finite neural

network by writing the function as the expectation of a random variable.

f(x) = f(0) +

∫
Rd

|f̂(w)|∥w∥2
C

((
C

∥w∥2

)
(cos (bw + ⟨w, x⟩)− cos (bw))

)
dw

where C =
∫
Rd ∥f̂(w)|∥w∥2dw. So |f̂(w)|∥w∥2

C is the probability on w. Denote the overall distribution

by Dw. Now by Lemma 8, we have that, when sampling each wi ∼ Dm for O(C
2

ϵ ) times, the
empirical mean can be ϵ-close to the expectation. That is

f(x)− ϵ ⪅ f(0) +
1

r

r∑
i=1

C

∥wi∥
(cos (bwi + ⟨wi, x⟩)− cos (bwi)) ⪅ f(x) + ϵ

The final Step 3 is to transform the cosine-like activation to sigmoid activation, which is the
commonly used activation in the standard neural net. This can be easily done by using a 2-layer
NN as shown in Lemma 9.

Therefore, combining this 2-layer approximation for cos-like activation and a 2-layer cosine-like
O(C

2

ϵ ) nodes NN gives the 3-layer network g.

Lemma 7 (Fourier representation in forms of infinite NN). The function f(x) =
∫
Rd f̂(w)e

i⟨w,x⟩dw
can be written as

f(0) +

∫
Rd

|f̂(w)| (cos (bw + ⟨w, x⟩)− cos (bw)) dw

Proof. This can be done by some direct rearrangements and replacements.∫
Rd

f̂(w)ei⟨w,x⟩dw =

∫
Rd

f̂(w)dw +

∫
Rd

f̂(w)(ei⟨w,x⟩ − 1)dw

= f(0) +

∫
Rd

|f̂(w)|eibw(ei⟨w,x⟩ − 1)dw

= f(0) +

∫
Rd

|f̂(w)|(ei(bw+⟨w,x⟩) − eibw)dw

= f(0) +

∫
Rd

|f̂(w)| (cos (bw + ⟨w, x⟩)− cos (bw)) dw

Here the third equality comes from the polar decomposition of f̂(w) – the |f̂(w)| is the magnitude
part and eibw the radial part (bw as the angle), and the last inequality comes from eiz = cos(z) +
i sin(z).
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Lemma 8 (Approximation error of Sub-sampling). Sample one w ∈ Rd with probability |f̂(w)|∥w∥2
C

for r times, denote them as {wi}i∈[r]. Then, as long as r = O(C
2

ϵ ), we have with high probability,

f(x)− ϵ ⪅ f(0) +
1

r

r∑
i=1

C

∥wi∥
(cos (bwi + ⟨wi, x⟩)− cos (bwi)) ⪅ f(x) + ϵ

Proof. The results come from standard concentration inequality and we omit the details here.

Lemma 9. Given gw(x) =
C

∥w∥2 (cos (bw + ⟨w, x⟩)− cos (bw)), there exists a 2-layer neural network

f0 of size O(1/ϵ) with sigmoid activations, such that supx∈[−1,1] |f0(y)− hw(y)| ≤ ϵ.
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