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CSE543: Deep Learning

Instructor: Simon Du
Teaching Assistant: Ruoqi Shen, Yifang Chen

“Course Website (contains all logistic information): https://courses.Cs.washington.edi]
courses/cse543/23wi/

[Piazza: https://piazza.com/class/lbsxy7e01whdd
EAnnouncements: Canvas
D%omework: Canvas
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CSE543: Deep Learning

What this class is:

- Fundamentals of DL: Neural network architecture, awtion
properties, optimization, generalization, generative models,
representation learning

 Preparation for further learning / research: the field is fast-
moving, you will be able to apply the fundamentals and teach
yourself the latest

What this class is not:
* An easy course: mathematically easy
A survey course: laundry list of algorithms

«{An application course: implementation of different architectures on
different datasets




Prerequisites

= Working knowledge of:
= Linear algebra
= Vector calculus
= Probability and statistics
= Algorithms
= Machine leanring (CSE 446/546)
« Mathematical maturity 4
= “Can | learn these topics concurrently?”




Lecture

= Time: Tuesday and Thursday 9:00 - 10:20AM

= MUE 153 or Zoom (see website for the schedule)
= Slides + handwritten notes (e.g., proofs)

« Please ask questions &— R

= *Recordings on Canvas

= Tentative schedule on course website

—




Homework (40%))

= 2 homework (20%+20%)

0 Each contains both theoretical questions and will have
programming

0 Related to course materials

0 Collaboration okay but must write who you collaborated
with. You must write, submit, and understand your
answers and code.

0 Submit on Canvas

0 Must be typed

O Two late days

5 Tentative imeline:
5 HW 1 due: 1/27
0 HW 2 due: 2/10
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Course Project (60%)

= Group of 1-2.

= Topic: literature review (state-of-the-art) or original
research. any thy  vlated MV
‘esearcrt

= Some potential topics are in listed on Canvas. OK to do a
project on listed.

= You can work on a project related to your research.
- Proposal (due: 1/13): 5%
= Format: NeurlPS Latex format, ~1 - 1.5 pages
= Presentations on (3/7 and 3/9 on ZOOfTT): 20%
= Final report (due: 3/17): 35%
= Format: NeurlPS Latex format, ~8 pages
= Submit on Canvas




Possible Topics

= Approximation properties
= Advanced optimization methods

= Optimization theory for deep learning r}

= Generalization theory for deep learning
= Deep reinforcement learning D

= Implicit regularization

= Meta-learning algorithm / theory

= Robustness

= Lottery ticket hypothesis

= Deep learning application




Communication Chanels

= Announcements
= Canvas
= questions about class, homework help
Piazza
Office hours:

Simon Du: Tu 10:30 - 11:30 AM (in person Gates
312 and/or Zoom)

Ruogi Shen:
Yifang Chen:
Regrade requests / Personal concerns:
0 Emall to instructor or TAs



Addcodes

= Email: Elle Brown (ellean@cs.washington.edu)
for addcodes



mailto://(null)ellean@cs.washington.edu

Topic 1: Review (Today)

= ML Review: training, generalization

= Neural network basics: fully-connected neural network,
gradient descent



Topic 2: Approximation Theo[y Somity

= Why neural networks can express the (regressiong
classification, ...) function you want?

= Construction of such desired neural networks

= Universal approximation theorem
F\
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Topic 3: Optimization

= Review: Back-propagation
= Auto-differentiation

= Advanced optimizers: momentum (Nesterov acceleration),
adaptive method (AdaGrad, Adam)

= Techniques for improving optimization: batch-norm, layer-
. .‘\ . _ﬁ - ‘
norm, .. g talf oty | wide. W/
= Theory: global convergence of gradient of over-
parameterized neural networks

= Neural Tangent Kernel < w




Topic 4: Generalization JMWT\/\

Measures of eralization 4 %W/
Double descent Y
Techniques for improving generalization Veg M?)WW«J

(
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Generalization theory beyond VC-dimension
Why NN outperforms kernel — —

Implicit reqularization  algs ~ Ve




Topic 5: Architecture

Convolutional neural network
Recurrent neural network
= LSTM
Attention-based neural network
= Transformer

v\
General framework 980”"'5 vy
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Topic 6: Representation Learning
—

.
o $ o 9w K
= Multi-task_representation learning —

= Transfer learning

= Contrastive learning

= Domain adaptation ]
= Meta-learning

= Theory




Topic 7: Generative Models

Generative adversarial network
Variational Auto-Encoder
Energy-based models
Normalizing flows
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ML uses past data to make predictions




Supervised Learning Process | wosdd <t
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Single Node
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Sigmoid (logistic) activation function: g(z)
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Based on slide by Andrew Ng



Slide by Andrew Ng

Layer 1
(Input Layer)

Neural Network -
(ourpoSC Singlt
0 make omplex ASful

Layer 2 Layer 3

(Hidden Layer) (Output Layer)
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al) = “activation” of unit i in layerj

OV = weight matrix stores parameters
from layerj to layerj + 1

a§2) :g(@( )x +@( )a: +@( ):zj +@( ) )
o) = g(05)zo + O a1 + 02y + 0L 25)

( ) = g(@( ):r; "'@(1)9’7 + @( )Zli' + @:(33)1‘3)
he(x )—ag ) _ (@(2) (2) +@(2) (2) +@(2) (2) +@(2) (2))

If network has s; units in layer j and s;,; units in layer j+1,
then ©0) has dimension s;,; * (s7+1)

@(1) c R3x4 @(2) c R1><4

Slide by Andrew Ng



Multi-layer Neural Network - Binary Classification
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Multi-layer Neural Network - Binary Classification
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Multiple Output Units: One-vs-Rest

Car Motorcycle Truck

(v 05J— N

he (X) c RE
Multi-class
Logistic
Regression
We want:
1 0 0 0
0 1 0 0
h@(X) ~ 0 he (X) ~ 0 he (X) ~ 1 he (X) ~ 0
0 0 0 1

when pedestrian when car when motorcycle when truck

Slide by Andrew Ng 17



Multi-layer Neural Network - Regression

aV) = x
o@ = (O M)

//l’t\\\o{/{&.‘\\‘«,,

‘\'\:e/

= (X 2%
(SEEI OSSN ) EL
LIS = RE = AL
V2% ) li'x

a(1 at’
I+1) _ a0 a)
a — U(@ a ) a@) a®)

L(y7 @\) — (y - @\)2

O'(Z) = maX{O, Z} Regression

7= 0y (D)




al) = x
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Gradient Descent: O®) — @) _ ﬁv@(Z)L(y, Y) W/

Seems simple enough, why are packages like PyTorch, Tensorflow,
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation

—

2. Convenient libraries

3. GPU support




Gradient Descent:

Seems simple enough|
Theano, Cafe, MxNet ¢

1. Automatic differ

2. Convenient libra

class Net(nn.Module):

# 1 input image channel, 6 output channels, 3x3 square convolution

def __init__(self):
super(Net, self).__init__()
# kernel
self.convl = nn.Conv2d(1, 6, 3)
self.conv2 = nn.Conv2d(6, 16, 3)
# an affine operation: y = Wx + b
self.fcl = nn.Lineaxr(16 * 6 * 6, 120)
self.fc2 = nn.Linear (120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):

#
X
#

Max pooling over a (2, 2) window

F.max_pool2d(F.relu(self.convl(x)),
If the size is a square you can only
F.max_pool2d(F.relu(self.conv2(x)),

F.relu(self.fcl(x))
F.relu(self.fc2(x))
self.fc3(x)

return x

X X X X X

# 646 from image dimension

(2, 2))
specify a single number
2)

x.view(-1, self.num_flat_features(x))

# create your optimizer

optimizer
# in your training loop:
optimizer.zero_grad()
output = net(input)

loss criterion(output, target)
loss.backward()
optimizer.step()

# Does the update

optim.SGD(net.parameters(), lr=0.01)

# zero the gradient buffers




