(ap)
T S
H O
w s
0 €
O m

CSE543: Deep Learning

Instructor: Simon Du
Teaching Assistant: Ruoqi Shen, Yifang Chen

“Course Website (contains all logistic information): https://courses.Cs.washington.edi]
courses/cse543/23wi/

[Piazza: https://piazza.com/class/lbsxy7e01whdd
EAnnouncements: Canvas
D%omework: Canvas

(-~ i [
(ifomg: W 2-% Lo
ooy, Fro - (LAY FP

19: 30— [l 70

CSE543: Deep Learning

What this class is:

- Fundamentals of DL: Neural network architecture, awtion
properties, optimization, generalization, generative models,
representation learning

 Preparation for further learning / research: the field is fast-
moving, you will be able to apply the fundamentals and teach
yourself the latest

What this class is not:
* An easy course: mathematically easy
A survey course: laundry list of algorithms

«{An application course: implementation of different architectures on
different datasets

Prerequisites

= Working knowledge of:
= Linear algebra
= Vector calculus
= Probability and statistics
= Algorithms
= Machine leanring (CSE 446/546)
« Mathematical maturity 4
= “Can | learn these topics concurrently?”

Lecture

= Time: Tuesday and Thursday 9:00 - 10:20AM

= MUE 153 or Zoom (see website for the schedule)
= Slides + handwritten notes (e.g., proofs)

« Please ask questions &— R

= *Recordings on Canvas

= Tentative schedule on course website

—

Homework (40%))

= 2 homework (20%+20%)

0 Each contains both theoretical questions and will have
programming

0 Related to course materials

0 Collaboration okay but must write who you collaborated
with. You must write, submit, and understand your
answers and code.

0 Submit on Canvas

0 Must be typed

O Two late days

5 Tentative imeline:
5 HW 1 due: 1/27
0 HW 2 due: 2/10

/,_\—

Course Project (60%)

= Group of 1-2.

= Topic: literature review (state-of-the-art) or original
research. any thy vlated MV
‘esearcrt

= Some potential topics are in listed on Canvas. OK to do a
project on listed.

= You can work on a project related to your research.
- Proposal (due: 1/13): 5%
= Format: NeurlPS Latex format, ~1 - 1.5 pages
= Presentations on (3/7 and 3/9 on ZOOfTT): 20%
= Final report (due: 3/17): 35%
= Format: NeurlPS Latex format, ~8 pages
= Submit on Canvas

Possible Topics

= Approximation properties
= Advanced optimization methods

= Optimization theory for deep learning r}

= Generalization theory for deep learning
= Deep reinforcement learning D

= Implicit regularization

= Meta-learning algorithm / theory

= Robustness

= Lottery ticket hypothesis

= Deep learning application

Communication Chanels

= Announcements
= Canvas
= questions about class, homework help
Piazza
Office hours:

Simon Du: Tu 10:30 - 11:30 AM (in person Gates
312 and/or Zoom)

Ruogi Shen:
Yifang Chen:
Regrade requests / Personal concerns:
0 Emall to instructor or TAs

Addcodes

= Email: Elle Brown (ellean@cs.washington.edu)
for addcodes

mailto://(null)ellean@cs.washington.edu

Topic 1: Review (Today)

= ML Review: training, generalization

= Neural network basics: fully-connected neural network,
gradient descent

Topic 2: Approximation Theo[y Somity

= Why neural networks can express the (regressiong
classification, ...) function you want?

= Construction of such desired neural networks

= Universal approximation theorem
F\

MoV

— 7

Topic 3: Optimization

= Review: Back-propagation
= Auto-differentiation

= Advanced optimizers: momentum (Nesterov acceleration),
adaptive method (AdaGrad, Adam)

= Techniques for improving optimization: batch-norm, layer-
. .‘\ . _ﬁ - ‘
norm, .. g talf oty | wide. W/
= Theory: global convergence of gradient of over-
parameterized neural networks

= Neural Tangent Kernel < w

Topic 4: Generalization JMWT\/\

Measures of eralization 4 %W/
Double descent Y
Techniques for improving generalization Veg M?)WW«J

(

> 7# oty

Generalization theory beyond VC-dimension
Why NN outperforms kernel — —

Implicit reqularization algs ~ Ve

Topic 5: Architecture

Convolutional neural network
Recurrent neural network
= LSTM
Attention-based neural network
= Transformer

v\
General framework 980”"'5 vy
— T

Topic 6: Representation Learning
—

.
o $ o 9w K
= Multi-task_representation learning —

= Transfer learning

= Contrastive learning

= Domain adaptation]
= Meta-learning

= Theory

Topic 7: Generative Models

Generative adversarial network
Variational Auto-Encoder
Energy-based models
Normalizing flows

@ Spotify’

Discover Weekly amazon
—
98% Match

ML uses past data to make predictions

Supervised Learning Process | wosdd <t
V) '\‘.')‘.d.
j()(x‘;‘f\‘)s,)-;, J 5) © J:\:PW
, oA Jusse, foxt b A
X..; ',1,1/|()!/‘T 68 ") e ,

0, -, ¢} dotni fiCe1% (Q/CFVW?(' ,
Collect a dataset VA < 1 ey (freed (h KX
O\R /egvel ‘| &X', k)

Decide on a model . - ' (3) tVee

Find the function which fits the data best
(QL(‘/J"J | Choose a loss function { (jC()‘)) 7)_9 R
AT C pick the function which minimizes los&ERM 7L)
on data ,?é 0‘1/7""'_"")_',; A [”fmlf%') "' %,&(
+E5 n#l A}%uawdﬁ(
Use function to make prediction on new ‘
examples Ynew

"
pekictim: (Yo 2 Fp s

19

Framework /X T @j’
S ol e ey

(ool
HE Y
Lt () = (W)ND B R J
Levit) =g 34 F060,47)
Lt (f] = LTVHL/ -+ Le (5 _Lfy(f,'/)ox:wfaw
= w1 L (F) P oo
Ty 1 opt
+ () MJ:Z]TL{VHJ N
fV)fW‘/‘?Wh

- LW ULJ — v (]L) 7@VV()V

20

T - 7LL,4M7/- Counected A oy
Neural Networks s aumediott dnyers

f)"l/l()v\f
o)
CEL
— (.

- nod ¢ /Wuvow /wm’(Cunap! fhpotﬂl@ﬁ ;g-MDJU
Poin U o tht g
O Smpe “ Sty gext dayer
2,) activotin ULW\CT / . ondr (e U

SEELIL welght € R

Single Node

”b_LaS lirllt” CCQ go
~ = < T
[To N wo =1 X = 1 0 — !
%ax 6" x 2 02
~ 8o ' T3 03
91 S B B - B

N

M
9 inar
y @ ; > Z / _>h9 (X) = g (HTX) fogist»;c

3 1 Regression
@/ R

1
1+ e %

Sigmoid (logistic) activation function: g(z)

O’fV\ﬂ/‘ RC(/U MY 9/0)

Based on slide by Andrew Ng

Slide by Andrew Ng

Layer 1
(Input Layer)

Neural Network -
(ourpoSC Singlt
0 make omplex ASful

Layer 2 Layer 3

(Hidden Layer) (Output Layer)

11

m aewy perleyt

W)@

al) = “activation” of unit i in layerj

OV = weight matrix stores parameters
from layerj to layerj + 1

a§2) :g(@()x +@()a: +@():zj +@())
o) = g(05)zo + O a1 + 02y + 0L 25)

() = g(@():r; "'@(1)9’7 + @()Zli' + @:(33)1‘3)
he(x)—ag) _ (@(2) (2) +@(2) (2) +@(2) (2) +@(2) (2))

If network has s; units in layer j and s;,; units in layer j+1,
then ©0) has dimension s;,; * (s7+1)

@(1) c R3x4 @(2) c R1><4

Slide by Andrew Ng

Multi-layer Neural Network - Binary Classification

R
(1) _ soifwilt N O
a’=x | WA AN

SN\ /7
SNOSSAS
ga.‘rﬁﬁm§ KIS

a1 — g(@(l)a(l)) 3(2) 3(3)

' L(y,y) = ylog(y) + (1 — y)log(l = y)
y=g(0"all) 1
g(z) =

Binary
Logistic
Regression

1 +e%

Multi-layer Neural Network - Binary Classification

(1) —
a =X Pc(/d

/13\\\«,{/{
1@ = 5(OWaM)

oz O Vv B
A PN

SN ERRY < 5= 0
LS 9 NSNS
S BT

a(1 at’
ot = 5 (0WaW) a0 a@ A

’ L(y,3) = ylog(3) + (1 — y)log(1l — 3)
7y = g(0WaH) 1 Binary

:{,07—'\?6(o(z) = max{0, z} g(z) = 11 oz Losistic

Regression

Multiple Output Units: One-vs-Rest

Car Motorcycle Truck

(v 05J— N

he (X) c RE
Multi-class
Logistic
Regression
We want:
1 0 0 0
0 1 0 0
h@(X) ~ 0 he (X) ~ 0 he (X) ~ 1 he (X) ~ 0
0 0 0 1

when pedestrian when car when motorcycle when truck

Slide by Andrew Ng 17

Multi-layer Neural Network - Regression

aV) = x
o@ = (O M)

//l’t\\\o{/{&.‘\\‘«,,

‘\'\:e/

= (X 2%
(SEEI OSSN) EL
LIS = RE = AL
V2%) li'x

a(1 at’
I+1) _ a0 a)
a — U(@ a) a@) a®)

L(y7 @\) — (y - @\)2

O'(Z) = maX{O, Z} Regression

7= 0y (D)

al) = x
,@ — @y

a® = g (z@)

U+ — @Dgq0
D) = g (z0+D)

7= g(OMaD)

L(y,y) = ylog(y) + (1 — y)log(l —)
1
1 +e%

g(z) =

(0}

% Jeep i / AEnMM) yute At gt

Gradient Descent:) « @) _ UV@U)L(%@ Vi

-

Gradient Descent: O®) — @) _ ﬁv@(Z)L(y, Y) W/

Seems simple enough, why are packages like PyTorch, Tensorflow,
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation

—

2. Convenient libraries

3. GPU support

Gradient Descent:

Seems simple enough|
Theano, Cafe, MxNet ¢

1. Automatic differ

2. Convenient libra

class Net(nn.Module):

1 input image channel, 6 output channels, 3x3 square convolution

def __init__(self):
super(Net, self).__init__()
kernel
self.convl = nn.Conv2d(1, 6, 3)
self.conv2 = nn.Conv2d(6, 16, 3)
an affine operation: y = Wx + b
self.fcl = nn.Lineaxr(16 * 6 * 6, 120)
self.fc2 = nn.Linear (120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):

#
X
#

Max pooling over a (2, 2) window

F.max_pool2d(F.relu(self.convl(x)),
If the size is a square you can only
F.max_pool2d(F.relu(self.conv2(x)),

F.relu(self.fcl(x))
F.relu(self.fc2(x))
self.fc3(x)

return x

X X X X X

646 from image dimension

(2, 2))
specify a single number
2)

x.view(-1, self.num_flat_features(x))

create your optimizer

optimizer
in your training loop:
optimizer.zero_grad()
output = net(input)

loss criterion(output, target)
loss.backward()
optimizer.step()

Does the update

optim.SGD(net.parameters(), lr=0.01)

zero the gradient buffers

