Deep Learning
Generalization




Measure of Generalization

Generalization: difference in performance on train vs. test.
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Problems with the theoretical idealization

Data is not identically distributed:

* Images (Imagenet) are scraped in slightly different ways

—

- Data has systematic bias (e.g., patients are tested based on
symptoms they exhibit) S%PW

 Data is result of interaction (reinforcement learning)
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Meta Theorem of Generalization j—m/w
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Meta theorem of generalization: with probability 1 —§ over the
choice of a training set of size n, we have
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* VC (Vapnik-Chervonenkis) dimension
« Rademacher complexity
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Classical view of generalization
ongdidow

Decoupled view of generalization and optimization

Optimization: find a global minimum: min — 2 Z(f(x),y,)
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( Generalization: how well does the global optlmlzer generalize
> fuplct veglowi ortoy

Practical implications: to have a good generalization, make

sure & is not too “complex”.

Strategies:

* Direct capacity control: bound the size of the network /
amount of connections, clip the weights, etc.

 Regularization: add a penalty term for “complex” predictors:
weight decay (£, norm), dropout, etc.



Techniques for
Improving Generalization
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Dropout

Intuition: randomly cut off some connections and neurons.

Training: for each input, at each iteration, randomly “turn off”
each neuron with a probability 1 — «

e Change a neuron to 0 by sampling a Bernoulli variable.

e Gradient only propogatd from non-zero neurons.
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Dropout

Dropout changes the scale of the output neuron:
 y = Dropout(c(WX))
» Ely] = aklo(Wx)]

Test time:y = ao(Wx) to match the scale




Understanding Dropout

* Dropout forces the neural network to learn redundant patterns.
* Dropout can be viewed as an implicit L2 regularizer (Wager,

Wang, Liang '13). //zhm/ st
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« Continue training may lead to overfitting.
* Track performance on a held-out validation set.
* Theory: for linear models, equivalent to L2 regularization.
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Data Augmentation

Depend on data types.
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Mixup data augmentation
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Data Augmentation fartimert Gualy g1/

Depend on data types. [entene — (\7&/_'/

Natural language processing:
« Synonym replacement

 This article will focus on summarizing data augmentation in
NLP

* This write-up will focus on summarizing data augmentation in
NLP,

« Back translation: translate the text data to some language and
then translate back

| have no time. -> B %8G NI|8]. -> | do not have time.



Learning rate scheduling

Start with large learning rate. After some epochs, use small
learning rate.

Learning rate schedule
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Learning rate scheduling

Start with large learning rate. After some epochs, use small
learning rate.

Theory:

 Linear model / Kernel: large learning rate first learns
eigenvectors with large eigenvalues (Nakkiran, "20).

* Representation learning (Li et al., ‘19)
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Normalizations

Batch normalization (loffe & Szegedy, '15)
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Layer normalization (Ba, Kiros, Hinton, '16)

Weight normalization (Salimans, Kingma, "16)

Instant normalization (Ulyanov, Vedaldi, Lempitsky, "16)

« Group normalization (Wu & He, '18)



Generalization Theory
for Deep Learning
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Basic version: finite hypothesis class

Finite hypothesis class: with probability 1 — 6 over the choice

of a training set of size n, for a bounded loss £, we have
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VC-Dimension S Gl

Motivation: Do we need to consider every classifier in & ?

Intuitively, pattern of classifications on the training set should
suffice. (Two predictors that predict identically on the training set
should generalize similarly).

Let F = {f: RY - {+1, — 1}} be a class of binary classifiers.

The growth function Ilg : N — [Fis defined as:

Mpom = max | {(f). fe), .. f,)) | f€ F |

(XX, - -5X,,,)

The VC dimension of & is defined as:
VCdim(F) = max{m : Ilg(m) = 2"} .



VC-dimension Generalization bound

Theorem (Vapnik-Chervonenkis): with probability 1 — 6 over
the choice of a training set, for a bounded loss £, we have
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Examples:
e Linear functions: VC-dim = O(dimension)
* Neural network: VC-dimension of fully-c ith width

VY/a\nd H layers is ® (WH) (Bartlett et al., '17).



Problems with VC-dimension bound L

7
1. In over-parameterized regime, bound >> 1.

2. Cannot explain the random noise phenomenon:

 Neural networks that fit random labels and that fit true labels
have the same VC-dimension. /[, 0(@(){44,//%
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Understanding DL Requires Rethinking Generalization



PAC Bayesian Generalization Bounds

Setup: Let P be a prior over function in class &, let QO be the
posterior (after algorithm’s training). —

Theorem: with probability 1 — 6 over the choice of a training set,

for a bounded loss £, we have Jatu-Lepey ab,¢
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Rademacher Complexity

Intuition: how well can a classifier class fit random noise?

(Empirical) Rademacher complexity: For a training set

S = {x{,%,,...,x,}, and a class &, denote:
n
R(S) =E,sup ) 0,f(x).
feg i=1

where o; ~ Unif{+1, — 1} (Rademacher R.V. ).

(Population) Rademacher complexity:
R, =E, [Rn(s)].



Rademacher Complexity Generalization Bound

Theorem: with probability 1 — 6 over the choice of a training set,
for a bounded loss £, we have
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Kernel generalization bound

Use Rademacher complexity theory, we can obtain a

generalization bound O/ y " (H*)™'y/n) where y € R" are n
labels, and H* € R is the kernel (e.g., NTK) matrix.
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Norm-based Rademacher complexﬂy bound

£ =l

Theorem: If the activation function is o is p-Lipschitz. Let
F = {x > Wy, ,6(Wo(---6(Wx)---), ||WT||1 o S BYh € [H]}

then R (&5) < ||XT||2OO(2,OB)EPrl 2 In d where
= [x},...,x ] € R™"js the |nput data matrix.
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Comments on generalization bounds MD/“ 77

e wﬁm
* When plugged in real values, the bounds are rarely non- trlvm
(i.e., smaller than 1)  (ownlntss, Gaoee, Couny 2 1rgse ¢
» “Fantastic Generalization Measures and Where to Find them”

by Jiang et al. '19 : large-scale investigation of the correlation of
extant generalization measures with true generalization.
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[Neyshabur et al ICLR18] Zhang’18]

[Neyshabur et al *17] [Bartlett et al NIPS17],

Image credits to Andrej Risteski



Comments on generalization bounds

« Uniform convergence may be unable to explain generalization
of deep learning [Nagarajan and Kolter, "19]

» Uniform convergence: a bound for all f € F

« Exists example that 1) can generalize, 2) uniform

convergence fails. .
%YA)« aAVicw p L//&)’/h/s

* Rates:
« Most bounds:l/\/ﬁ
» Local Rademacher complexity: 1/n.
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Double descent %‘M W LeSiaae

under-fitting . over-fi tting

. Test risk

under-parameterized

Test risk

over-parameterized

'?‘D "\é “classical” “modern”
EE é regime interpolating regime
N . .
~ o Training risk ~ Training risk:
sweet spot\: - S~ . _interpolation threshold
Complexity of H Complexity of H
(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

Belkin, Hsu, Ma, Mandal ‘18

* There are cases where the model gets bigger, yet the (test!)

loss goes down, sometimes even lower than in the classical
“under-parameterized” regime.

« Complexity: number of parameters.



Double descent

Widespread phenomenon, across architectures (Nakkiran et al.
'19):

0.8 (% label nolse | —— (% label nolse
—— 10% label noise 0.4 —— 5% label noise
0.7 20% label noise -~ 10% label noise
15% label noise
g, 0.6 é 0.3 20% label noise
w w
i i
0.4
0.1
0.3 |
1 10 20 30 40 50 60 64 1 10 20 30 40 50 60 64
ResNetl8 Width Parameter ResNet18 Width Parameter
08 | 05 |
g §
¥
0.4 %
506/ % 5 ¥
D W03 M
c c H
® 0.4 ®
- = 0.2

©

N
(=]
-

e | 10 20 30 40 50 60 64 0.0—3 10 20 30 40 50 60 64
ResNet18 Width Parameter ResNet18 Width Parameter

(a) CIFAR-100. There is a peak in test error even (b) CIFAR-10. There is a “plateau”™ in test error
with no label noise. around the interpolation point with no label noise,

—— which develops into a peak for added label noise.
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Double descent

Widespread phenomenon, across architectures (Nakkiran et al.
'19):
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Double descent

Widespread phenomenon, also in kernels (can be formally proved
iIn some concrete settings [Mei and Montanari '20]), random
forests, etc.
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Double descent

Also in other quantities such as train time, dataset, etc (Nakkiran
et al. "19):
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Figure 2: Left: Test error as a function of model size and train epochs. The horizontal line corre-
sponds to model-wise double descent—varying model size while training for as long as possible. The
vertical line corresponds to epoch-wise double descent, with test error undergoing double-descent
as train time increases. Right Train error of the corresponding models. All models are Resnet18s
trained on CIFAR-10 with 15% label noise, data-augmentation, and Adam for up to 4K epochs.



Double descent

Optimal regularization can mitigate double descent [Nakkiran et
al. '21]:
Effect of Regularization: CNNs on CIFAR-100
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Double descent

Optimal regularization can mitigate double descent [Nakkiran et
al. '21]:
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Implicit Regularization

Different optimization algorithm
=» Different bias in optimum reached
=» Different Inductive bias
=» Different generalization properties




Implicit Bias s (W) = VAR ML,
Margin: ‘[Hﬂ),bzawm’wpaw - (w
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 Linear predictors: /b\ \
» Gradient descent, mirror descent, natural gradient descent,

steepest descent, etc maximize margins with respect to
different norms.

 Non-linear:

» Gradient descent maximizes margin for homogeneous neural
networks.

* Low-rank matrix sensing: gradient descent finds a low-rank
solution.



Separation between NN and kernel

» For approximation and optimization, neural network has no
advantage over kernel. Why NN gives better performance:
generalization.

« [Allen-Zhu and Li '20] Construct a class of functions & such that
y = f(x) forsome f € F
* no kernel is sample-efficient;
« Exists a neural network that is sample-efficient.



