Deep Learning
Generalization




Measure of Generalization

Generalization: difference in performance on train vs. test.
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Problems with the theoretical idealization

Data is not identically distributed:
* Images (Imagenet) are scraped in slightly different ways

« Data has systematic bias (e.g., patients are tested based on
symptoms they exhibit)

 Data is result of interaction (reinforcement learning)

« Domain / distribution shift



Meta Theorem of Generalization

Meta theorem of generalization: with probability 1 — 6 over the
choice of a training set of size n, we have
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Some measures of complexity:

* (Log) number of elements

VC (Vapnik-Chervonenkis) dimension
Rademacher complexity

PAC-Bayes



Classical view of generalization

Decoupled view of generalization and optimization

. Optimization: find a global minimum: min — 2 Z(f(x),y,)
feEF N

e Generalization: how well does the global optlmlzer generalize

Practical implications: to have a good generalization, make
sure & is not too “complex”.

Strategies:

* Direct capacity control: bound the size of the network /
amount of connections, clip the weights, etc.

 Regularization: add a penalty term for “"complex” predictors:
weight decay (£, norm), dropout, etc.



Techniques for
Improving Generalization
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Weight Decay

L2 regularization: 5||9||%

Implementation: 6 < (1 —n1)0 — n Vf(0)



Dropout

Intuition: randomly cut off some connections and neurons.

Training: for each input, at each iteration, randomly “turn off”
each neuron with a probability 1 —

 Change a neuron to 0 by sampling a Bernoulli variable.

e Gradient only propogatd from non-zero neurons.
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Dropout

Dropout changes the scale of the output neuron:
« y = Dropout(c(WX))
» E[y] = aklo(Wx)]

Test time:y = ao(Wx) to match the scale
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Understanding Dropout

* Dropout forces the neural network to learn redundant patterns.

* Dropout can be viewed as an implicit L2 regularizer (Wager,
Wang, Liang '13).




Early Stopping

» Continue training may lead to overfitting.
» Track performance on a held-out validation set.
« Theory: for linear models, equivalent to L2 regularization.

error validation

training

epochs



Data Augmentation

Depend on data types.

Computer vision: rotation, stretching, flipping, etc
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Mixup data augmentation

o %= A+ (1= ),

e 4 ~ Beta(0.2)




Data Augmentation

Depend on data types.

Natural language processing:
« Synonym replacement

 This article will focus on summarizing data augmentation in
NLP.

» This write-up will focus on summarizing data augmentation in
NLP.

« Back translation: translate the text data to some language and
then translate back

- | have no time. -> ;% 8H18]. -> | do not have time.



Learning rate scheduling

Start with large learning rate. After some epochs, use small
learning rate.

Learning rate schedule
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Learning rate scheduling

Start with large learning rate. After some epochs, use small
learning rate.

Theory:

* Linear model / Kernel: large learning rate first learns
eigenvectors with large eigenvalues (Nakkiran, "20).

* Representation learning (Li et al., ‘19)

100
> 90 1 f v
= gso
g o £
b S 70
= 70 i[
o oS
= 601 = |arge Ir 60 1 = |arge Ir
m— sall Ir m— small Ir
50
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch

Train Validation



Normalizations

Batch normalization (loffe & Szegedy, '15)

Layer normalization (Ba, Kiros, Hinton, "16)

Weight normalization (Salimans, Kingma, '16)

Instant normalization (Ulyanov, Vedaldi, Lempitsky, *16)

« Group normalization (Wu & He, '18)



Generalization Theory
for Deep Learning
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Basic version: finite hypothesis class

Finite hypothesis class: with probability 1 — ¢ over the choice
of a training set of size n, for a bounded loss £, we have

sup
feF

1 &
; Z C(f(x),y;) — [E(x,y)ND [f(f(x)’ )7)]
i=1

F|+1logl/od

oy

n

)



VC-Dimension

Motivation: Do we need to consider every classifier in & ?

Intuitively, pattern of classifications on the training set should
suffice. (Two predictors that predict identically on the training set
should generalize similarly).

Let F = {f: RY - {+1, — 1]} be a class of binary classifiers.

The growth function I1g : N — [Fis defined as:
H%(m) — max ‘ {(f(xl)af(-XZ)a af(xm)) | fe 37;} ‘ .

(X[ X5+« X))

The VC dimension of & is defined as:
VCdim(#) = max{m : [1g;(m) = 2™} .



VC-dimension Generalization bound

Theorem (Vapnik-Chervonenkis): with probability 1 — o over
the choice of a training set, for a bounded loss £, we have

sup
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Examples:

e Linear functions: VC-dim = O(dimension)

* Neural network: VC-dimension of fully-connected net with width
W and H layers is ® (WH) (Bartlett et al., ’17).
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Problems with VC-dimension bound

1. In over-parameterized regime, bound >> 1.
2. Cannot explain the random noise phenomenon:

 Neural networks that fit random labels and that fit true labels
have the same VC-dimension.

Practice: gradient descent
OL(0(t))

O(t+ 1)« 0(t) —n 0

== 0 True labels

g
o

® Random labels Optimization

error -> 0 for
both true
labels and
random labels !

=
wn

Optimization Error
o [
[0 o

o
o

0 5 10 15 20 25
Thousand steps

Zhang Bengio Hardt Recht Vinyals 2017
Understanding DL Requires Rethinking Generalization



PAC Bayesian Generalization Bounds

Setup: Let P be a prior over function in class &, let Q be the
posterior (after algorithm’s training).

Theorem: with probability 1 — 6 over the choice of a training set,
for a bounded loss £, we have

o KL P)+logl/é
sup | — 3 £(f05), %) = Euyyep [£F0), )] :0<\/ B >
i=1

feF n




Rademacher Complexity

Intuition: how well can a classifier class fit random noise?

(Empirical) Rademacher complexity: For a training set

S = {X{,%y, ..., X, }, and a class &, denote:
n
R(S) =E,sup ) o,f(x) .
f€3‘7 i=1

where o; ~ Unif{+1, — 1} (Rademacher R.V. ).

(Population) Rademacher complexity:
R = E, [Rn(s)].



Rademacher Complexity Generalization Bound

Theorem: with probability 1 — 6 over the choice of a training set,
for a bounded loss £, we have

sup
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Kernel generalization bound

Use Rademacher complexity theory, we can obtain a

generalization bound 0(\/yT(H*)_1y/n) where y € R" are n
labels, and H* € R"" is the kernel (e.g., NTK) matrix.
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Norm-based Rademacher complexity bound

Theorem: If the activation function is o is p-Lipschitz. Let
F = {x > Wy 16(W,0(---c(Wx)-- ), IW/ |, o < BYh € [H]}

then R(S) < ||XT||2 (2pB)1*14/2Ind where
= [x,...,x,] ER dXn is the input data matrix.



Comments on generalization bounds

* When plugged in real values, the bounds are rarely non-trivial
(i.e., smaller than 1)

“Fantastic Generalization Measures and Where to Find them”
by Jiang et al. '19 : large-scale investigation of the correlation of
extant generalization measures with true generalization.
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Comments on generalization bounds

« Uniform convergence may be unable to explain generalization
of deep learning [Nagarajan and Kolter, "19]

» Uniform convergence: a bound for all f € &#

« Exists example that 1) can generalize, 2) uniform
convergence fails.

* Rates:

« Most bounds:l/\/ﬁ
» Local Rademacher complexity: 1/n.



Double descent

under-fitting . over- fitting

. Test risk

under-parameterized

Test risk

over-parameterized

":‘J; "\ﬁ‘ “classical” “modern”
E E regime interpolating regime
\ ® -
~ o Training risk ~ Training risk:
sweet spot_ . —~ _ T~ . _interpolation threshold
Complexity of H Complexity of H
(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

Belkin, Hsu, Ma, Mandal ‘18

* There are cases where the model gets bigger, yet the (test!)
loss goes down, sometimes even lower than in the classical
“under-parameterized” regime.

« Complexity: number of parameters.



Double descent

Widespread phenomenon, across architectures (Nakkiran et al.
'19):
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(a) CIFAR-100. There is a peak in test error even (b) CIFAR-10. There is a “plateau” in test error
with no label noise. around the interpolation point with no label noise,
which develops into a peak for added label noise.



Double descent

Widespread phenomenon, across architectures (Nakkiran et al.
'19):
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Double descent

Widespread phenomenon, also in kernels (can be formally proved
in some concrete settings [Mei and Montanari "20]), random
forests, etc.
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Double descent

Also in other quantities such as train time, dataset, etc (Nakkiran
et al. '19):
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Figure 2: Left: Test error as a function of model size and train epochs. The horizontal line corre-
sponds to model-wise double descent—varying model size while training for as long as possible. The
vertical line corresponds to epoch-wise double descent, with test error undergoing double-descent
as train time increases. Right Train error of the corresponding models. All models are Resnet18s
trained on CIFAR-10 with 15% label noise, data-augmentation, and Adam for up to 4K epochs.



Double descent

Optimal regularization can mitigate double descent [Nakkiran et
al. '21]:
Effect of Regularization: CNNs on CIFAR-100
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Double descent

Optimal regularization can mitigate double descent [Nakkiran et

al. '21]:

Test Error for Regularized Random Features
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Implicit Regularization

Different optimization algorithm
=» Different bias in optimum reached
=>» Different Inductive bias
=>» Different generalization properties




Implicit Bias

Margin:

 Linear predictors:

« Gradient descent, mirror descent, natural gradient descent,
steepest descent, etc maximize margins with respect to
different norms.

 Non-linear:

« Gradient descent maximizes margin for homogeneous neural
networks.

« Low-rank matrix sensing: gradient descent finds a low-rank
solution.



Separation between NN and kernel

* For approximation and optimization, neural network has no
advantage over kernel. Why NN gives better performance:
generalization.

» [Allen-Zhu and Li '20] Construct a class of functions & such that
y = f(x) for some f € F:
* no kernel is sample-efficient;
» Exists a neural network that is sample-efficient.



