
Deep Learning 
Generalization



Measure of Generalization
Generalization: difference in performance on train vs. test.  

 

Assumption  

1
n

n

∑
i=1

ℓ( f(xi), yi) − 𝔼(x,y)∼𝒟[ℓ( f(x), y)]

(xi, yi) i . i . d . ∼ 𝒟



Problems with the theoretical idealization
Data is not identically distributed: 

• Images (Imagenet) are scraped in slightly different ways 

• Data has systematic bias (e.g., patients are tested based on 
symptoms they exhibit) 

• Data is result of interaction (reinforcement learning) 

• Domain / distribution shift



Meta Theorem of Generalization

Meta theorem of generalization: with probability  over the 
choice of a training set of size , we have  

 

Some measures of complexity: 
• (Log) number of elements  
• VC (Vapnik-Chervonenkis) dimension 
• Rademacher complexity 
• PAC-Bayes 
• …

1 − δ
n

sup
f∈ℱ

1
n

n

∑
i=1

ℓ( f(xi), yi) − 𝔼(x,y)∼D [ℓ( f(x), y)] = O ( Complexity(ℱ) + log(1/δ)
n )



Classical view of generalization
Decoupled view of generalization and optimization: 

• Optimization: find a global minimum:  

• Generalization: how well does the global optimizer generalize 

Practical implications: to have a good generalization, make 
sure  is not too “complex”. 
Strategies: 
• Direct capacity control: bound the size of the network / 

amount of connections, clip the weights, etc. 
• Regularization: add a penalty term for “complex” predictors: 

weight decay (  norm), dropout, etc.

min
f∈ℱ

1
n

m

∑
i=1

ℓ( f(xi), yi)

ℱ

ℓ2



Techniques for 
Improving Generalization



Weight Decay

L2 regularization:  

Implementation:  

λ
2

∥θ∥2
2

θ ← (1 − ηλ)θ − η∇f(θ)



Intuition: randomly cut off some connections and neurons. 

Training: for each input, at each iteration, randomly “turn off” 
each neuron with a probability  
• Change a neuron to 0 by sampling a Bernoulli variable. 
• Gradient only propogatd from non-zero neurons. 

1 − α

Dropout



Dropout changes the scale of the output neuron: 
•  
•  

Test time:  to match the scale 

y = Dropout(σ(WX))
𝔼[y] = α𝔼[σ(Wx)]

y = ασ(Wx)

Dropout



• Dropout forces the neural network to learn redundant patterns. 
• Dropout can be viewed as an implicit L2 regularizer (Wager, 

Wang, Liang ’13). 

Understanding Dropout



• Continue training may lead to overfitting. 
• Track performance on a held-out validation set. 
• Theory: for linear models, equivalent to L2 regularization. 

Early Stopping



Data Augmentation
Depend on data types. 

Computer vision: rotation, stretching, flipping, etc



Mixup data augmentation

•  

•  
•

̂x = λxi + (1 − λ)xj
̂y = λyi + (1 − λ)yj

λ ∼ Beta(0.2)



Data Augmentation
Depend on data types. 

Natural language processing: 
• Synonym replacement 

• This article will focus on summarizing data augmentation in 
NLP. 

• This write-up will focus on summarizing data augmentation in 
NLP. 

• Back translation: translate the text data to some language and 
then translate back 
• I have no time. -> 我没有时间. -> I do not have time.



Learning rate scheduling
Start with large learning rate. After some epochs, use small 
learning rate. 

Learning rate schedule

⌘1
⌘2
⌘3

t1 t2t3
⌘4



Learning rate scheduling
Start with large learning rate. After some epochs, use small 
learning rate. 
Theory: 
• Linear model / Kernel: large learning rate first learns 

eigenvectors with large eigenvalues (Nakkiran, ’20).  
• Representation learning (Li et al., ‘19)

Train Validation



Normalizations

• Batch normalization (Ioffe & Szegedy, ’15) 

• Layer normalization (Ba, Kiros, Hinton, ’16) 

• Weight normalization (Salimans, Kingma, ’16) 

• Instant normalization (Ulyanov, Vedaldi, Lempitsky, ’16) 

• Group normalization (Wu & He, ’18) 

• …



Generalization Theory 
for Deep Learning



Basic version: finite hypothesis class

Finite hypothesis class: with probability  over the choice 
of a training set of size , for a bounded loss , we have  

1 − δ
n ℓ

sup
f∈ℱ

1
n

n

∑
i=1

ℓ( f(xi), yi) − 𝔼(x,y)∼D [ℓ( f(x), y)] = O ( log |ℱ | + log 1/δ
n )



VC-Dimension

Motivation: Do we need to consider every classifier in ? 
Intuitively, pattern of classifications on the training set should 
suffice. (Two predictors that predict identically on the training set 
should generalize similarly). 

Let  be a class of binary classifiers. 

The growth function  is defined as: 

. 

The VC dimension of  is defined as: 
 

ℱ

ℱ = {f : ℝd → {+1, − 1}}

Πℱ : ℕ → 𝔽
Πℱ(m) = max

(x1,x2,…,xm)
{( f(x1), f(x2), …, f(xm)) ∣ f ∈ ℱ}

ℱ
VCdim(ℱ) = max{m : Πℱ(m) = 2m} .



VC-dimension Generalization bound

Theorem (Vapnik-Chervonenkis): with probability  over 
the choice of a training set, for a bounded loss , we have  

 

Examples: 
• Linear functions: VC-dim = O(dimension) 
• Neural network: VC-dimension of fully-connected net with width 

 and  layers is  (Bartlett et al., ’17).

1 − δ
ℓ

sup
f∈ℱ

1
n

n

∑
i=1

ℓ( f(xi), yi) − 𝔼(x,y)∼D [ℓ( f(x), y)] = O ( VCdim(ℱ)log n + log 1/δ
n )

W H Θ̃ (WH)



Problems with VC-dimension bound
1. In over-parameterized regime, bound >> 1. 
2. Cannot explain the random noise phenomenon: 

• Neural networks that fit random labels and that fit true labels 
have the same VC-dimension.



PAC Bayesian Generalization Bounds

Setup: Let  be a prior over function in class , let  be the 
posterior (after algorithm’s training). 

Theorem: with probability  over the choice of a training set, 
for a bounded loss , we have 

P ℱ Q

1 − δ
ℓ

sup
f∈ℱ

1
n

n

∑
i=1

ℓ( f(xi), yi) − 𝔼(x,y)∼D [ℓ( f(x), y)] = O ( KL(Q ∣ ∣ P) + log 1/δ
n )



Rademacher Complexity
Intuition: how well can a classifier class fit random noise? 

(Empirical) Rademacher complexity: For a training set 
, and a class , denote:  

 . 

where  (Rademacher R.V. ). 

(Population) Rademacher complexity:  

.

S = {x1, x2, …, xn} ℱ

R̂n(S) = 𝔼σ sup
f∈ℱ

n

∑
i=1

σi f(xi)

σi ∼ Unif{+1, − 1}

Rn = 𝔼S [R̂n(s)]



Rademacher Complexity Generalization Bound

Theorem: with probability  over the choice of a training set, 
for a bounded loss , we have

 

and  

1 − δ
ℓ

sup
f∈ℱ

1
n

n

∑
i=1

ℓ( f(xi), yi) − 𝔼(x,y)∼D [ℓ( f(x), y)] = O ( R̂n

n
+

log 1/δ
n )

sup
f∈ℱ

1
n

n

∑
i=1

ℓ( f(xi), yi) − 𝔼(x,y)∼D [ℓ( f(x), y)] = O ( Rn

n
+

log 1/δ
n )



Use Rademacher complexity theory, we can obtain a 

generalization bound  where  are  
labels, and  is the kernel (e.g., NTK) matrix. 

O( y⊤(H*)−1y/n) y ∈ ℝn n
H* ∈ ℝn×n

Kernel generalization bound



Norm-based Rademacher complexity bound

Theorem: If the activation function is  is -Lipschitz. Let  
 

then  where 
 is the input data matrix. 

σ ρ
ℱ = {x ↦ WH+1σ(Whσ(⋯σ(W1x)⋯),∥WT

h ∥1,∞ ≤ B ∀h ∈ [H]}
Rn(𝒮) ≤ ∥X⊤∥2,∞(2ρB)H+1 2 ln d

X = [x1, …, xn] ∈ ℝd×n



Comments on generalization bounds
• When plugged in real values, the bounds are rarely non-trivial 

(i.e., smaller than 1) 
• “Fantastic Generalization Measures and Where to Find them” 

by Jiang et al. ’19 : large-scale investigation of the correlation of 
extant generalization measures with true generalization.

Image	credits	to	Andrej	Risteski



Comments on generalization bounds
• Uniform convergence may be unable to explain generalization 

of deep learning [Nagarajan and Kolter, ’19] 
• Uniform convergence: a bound for all  
• Exists example that 1) can generalize, 2) uniform 

convergence fails. 

• Rates: 
• Most bounds: . 
• Local Rademacher complexity: .

f ∈ ℱ

1/ n
1/n



Double descent

• There are cases where the model gets bigger, yet the (test!) 
loss goes down, sometimes even lower than in the classical 
“under-parameterized” regime. 

• Complexity: number of parameters.

Belkin,	Hsu,	Ma,	Mandal	‘18



Double descent 
Widespread phenomenon, across architectures (Nakkiran et al. 
’19):



Double descent 
Widespread phenomenon, across architectures (Nakkiran et al. 
’19):



Double descent
Widespread phenomenon, also in kernels (can be formally proved 
in some concrete settings [Mei and Montanari ’20]), random 
forests, etc.



Double descent 
Also in other quantities such as train time, dataset, etc (Nakkiran 
et al. ’19):



Double descent 
Optimal regularization can mitigate double descent [Nakkiran et 
al. ’21]:



Double descent 
Optimal regularization can mitigate double descent [Nakkiran et 
al. ’21]:



Implicit Regularization



Implicit Bias
Margin: 

• Linear predictors: 
• Gradient descent, mirror descent, natural gradient descent, 

steepest descent, etc maximize margins with respect to 
different norms. 

• Non-linear: 
• Gradient descent maximizes margin for homogeneous neural 

networks. 
• Low-rank matrix sensing: gradient descent finds a low-rank 

solution.



Separation between NN and kernel
• For approximation and optimization, neural network has no 

advantage over kernel. Why NN gives better performance: 
generalization. 

• [Allen-Zhu and Li ’20] Construct a class of functions such that 
 for some : 

• no kernel is sample-efficient; 
• Exists a neural network that is sample-efficient.

ℱ
y = f(x) f ∈ ℱ


