Deep Learning
Generalization

Measure of Generalization

Generalization: difference in performance on train vs. test.

1 n
— 2 £, 3) = Biepyoal (),)
i=1

Assumption (x,y) i.i.d. ~ D

Problems with the theoretical idealization

Data is not identically distributed:
* Images (Imagenet) are scraped in slightly different ways

« Data has systematic bias (e.g., patients are tested based on
symptoms they exhibit)

 Data is result of interaction (reinforcement learning)

« Domain / distribution shift

Meta Theorem of Generalization

Meta theorem of generalization: with probability 1 — 6 over the
choice of a training set of size n, we have

o, Complexity(7) + Tog(1/8
sup |~ ' £(£06).3) = Eqeyyop [£(f(0.) ZO(\/ B)>
i=1

feF n

Some measures of complexity:

* (Log) number of elements

VC (Vapnik-Chervonenkis) dimension
Rademacher complexity

PAC-Bayes

Classical view of generalization

Decoupled view of generalization and optimization

. Optimization: find a global minimum: min — 2 Z(f(x),y,)
feEF N

e Generalization: how well does the global optlmlzer generalize

Practical implications: to have a good generalization, make
sure & is not too “complex”.

Strategies:

* Direct capacity control: bound the size of the network /
amount of connections, clip the weights, etc.

 Regularization: add a penalty term for “"complex” predictors:
weight decay (£, norm), dropout, etc.

Techniques for
Improving Generalization

W

Weight Decay

L2 regularization: 5||9||%

Implementation: 6 < (1 —n1)0 — n Vf(0)

Dropout

Intuition: randomly cut off some connections and neurons.

Training: for each input, at each iteration, randomly “turn off”
each neuron with a probability 1 —

 Change a neuron to 0 by sampling a Bernoulli variable.

e Gradient only propogatd from non-zero neurons.

/

\/

L/

W,
AW/ WA
O

bl
0
N

Dropout

Dropout changes the scale of the output neuron:
« y = Dropout(c(WX))
» E[y] = aklo(Wx)]

Test time:y = ao(Wx) to match the scale

oo
4

0

\

v
i
4

Understanding Dropout

* Dropout forces the neural network to learn redundant patterns.

* Dropout can be viewed as an implicit L2 regularizer (Wager,
Wang, Liang '13).

Early Stopping

» Continue training may lead to overfitting.
» Track performance on a held-out validation set.
« Theory: for linear models, equivalent to L2 regularization.

error validation

training

epochs

Data Augmentation

Depend on data types.

Computer vision: rotation, stretching, flipping, etc

T

czColaZeral_l.png claZernl_2.png CoraColaZere!_2.png

2N -

. T B

P’
N

CocaColaZercl_3.pny CocaColaZerol_6.png CocaColaZeret_T.png

Mixup data augmentation

o %= A+ (1=),

e 4 ~ Beta(0.2)

Data Augmentation

Depend on data types.

Natural language processing:
« Synonym replacement

 This article will focus on summarizing data augmentation in
NLP.

» This write-up will focus on summarizing data augmentation in
NLP.

« Back translation: translate the text data to some language and
then translate back

- | have no time. -> ;% 8H18]. -> | do not have time.

Learning rate scheduling

Start with large learning rate. After some epochs, use small
learning rate.

Learning rate schedule

s
77%2
4 ; ; ;

Learning rate scheduling

Start with large learning rate. After some epochs, use small
learning rate.

Theory:

* Linear model / Kernel: large learning rate first learns
eigenvectors with large eigenvalues (Nakkiran, "20).

* Representation learning (Li et al., ‘19)

100
> 90 1 f v
= gso
g o £
b S 70
= 70 i[
o oS
= 601 = |arge Ir 60 1 = |arge Ir
m— sall Ir m— small Ir
50
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch

Train Validation

Normalizations

Batch normalization (loffe & Szegedy, '15)

Layer normalization (Ba, Kiros, Hinton, "16)

Weight normalization (Salimans, Kingma, '16)

Instant normalization (Ulyanov, Vedaldi, Lempitsky, *16)

« Group normalization (Wu & He, '18)

Generalization Theory
for Deep Learning

W

Basic version: finite hypothesis class

Finite hypothesis class: with probability 1 — ¢ over the choice
of a training set of size n, for a bounded loss £, we have

sup
feF

1 &
; Z C(f(x),y;) — [E(x,y)ND [f(f(x)’)7)]
i=1

F|+1logl/od

oy

n

)

VC-Dimension

Motivation: Do we need to consider every classifier in & ?

Intuitively, pattern of classifications on the training set should
suffice. (Two predictors that predict identically on the training set
should generalize similarly).

Let F = {f: RY - {+1, — 1]} be a class of binary classifiers.

The growth function I1g : N — [Fis defined as:
H%(m) — max ‘ {(f(xl)af(-XZ)a af(xm)) | fe 37;} ‘ .

(X[X5+« X))

The VC dimension of & is defined as:
VCdim(#) = max{m : [1g;(m) = 2™} .

VC-dimension Generalization bound

Theorem (Vapnik-Chervonenkis): with probability 1 — o over
the choice of a training set, for a bounded loss £, we have

sup
feF

1 n
= D' £ 3) = Eqyyop [£(00.9)]
i=1

Examples:

e Linear functions: VC-dim = O(dimension)

* Neural network: VC-dimension of fully-connected net with width
W and H layers is ® (WH) (Bartlett et al., ’17).

o(f

VCdim(ZF)log 11 + log 1/5)
n

Problems with VC-dimension bound

1. In over-parameterized regime, bound >> 1.
2. Cannot explain the random noise phenomenon:

 Neural networks that fit random labels and that fit true labels
have the same VC-dimension.

Practice: gradient descent
OL(0(t))

O(t+ 1)« 0(t) —n 0

== 0 True labels

g
o

® Random labels Optimization

error -> 0 for
both true
labels and
random labels !

=
wn

Optimization Error
o [
[0 o

o
o

0 5 10 15 20 25
Thousand steps

Zhang Bengio Hardt Recht Vinyals 2017
Understanding DL Requires Rethinking Generalization

PAC Bayesian Generalization Bounds

Setup: Let P be a prior over function in class &, let Q be the
posterior (after algorithm’s training).

Theorem: with probability 1 — 6 over the choice of a training set,
for a bounded loss £, we have

o KL P)+logl/é
sup | — 3 £(f05), %) = Euyyep [£F0),)] :0<\/ B >
i=1

feF n

Rademacher Complexity

Intuition: how well can a classifier class fit random noise?

(Empirical) Rademacher complexity: For a training set

S = {X{,%y, ..., X, }, and a class &, denote:
n
R(S) =E,sup) o,f(x) .
f€3‘7 i=1

where o; ~ Unif{+1, — 1} (Rademacher R.V.).

(Population) Rademacher complexity:
R = E, [Rn(s)].

Rademacher Complexity Generalization Bound

Theorem: with probability 1 — 6 over the choice of a training set,
for a bounded loss £, we have

sup
fEF

and

sup
feF

1 n
- Z C(f(x), ¥) = Eeyyen [f(f(x)’ y)]
i=1

1 n
; Z C(f(x),y;) — [E(x,y)ND [f(f(x)’ y)]
i=1

:0(

=0<

R log 1/5>
4+
n n

— +

R, logl/o
n n

Kernel generalization bound

Use Rademacher complexity theory, we can obtain a

generalization bound 0(\/yT(H*)_1y/n) where y € R" are n
labels, and H* € R"" is the kernel (e.g., NTK) matrix.

1.01 "

0.8 1
. ©
© 0.6 4 <
i A
g 0.4 c
< 2 O

0.2 - —e— |1-loss

—— classification error
0.0 —— complexity measure o

00 02 04 06 08 1.0

Portion of random labels

Norm-based Rademacher complexity bound

Theorem: If the activation function is o is p-Lipschitz. Let
F = {x > Wy 16(W,0(---c(Wx)--), IW/ |, o < BYh € [H]}

then R(S) < ||XT||2 (2pB)1*14/2Ind where
= [x,...,x,] ER dXn is the input data matrix.

Comments on generalization bounds

* When plugged in real values, the bounds are rarely non-trivial
(i.e., smaller than 1)

“Fantastic Generalization Measures and Where to Find them”
by Jiang et al. '19 : large-scale investigation of the correlation of
extant generalization measures with true generalization.

VGG19
(19 layers)

10

II..-— [AGe,

uuuuuuuuuuu

Neyshabur,
[Bartlett-Mendelson’ 02]// \ \ 4

[Neyshabur et al ICLR18] Zhang’l 8]

[Neyshabur et al *17] [Bartlett et al NIPS17],

Image credits to Andrej Risteski

Comments on generalization bounds

« Uniform convergence may be unable to explain generalization
of deep learning [Nagarajan and Kolter, "19]

» Uniform convergence: a bound for all f € &#

« Exists example that 1) can generalize, 2) uniform
convergence fails.

* Rates:

« Most bounds:l/\/ﬁ
» Local Rademacher complexity: 1/n.

Double descent

under-fitting . over- fitting

. Test risk

under-parameterized

Test risk

over-parameterized

":‘J; "\ﬁ‘ “classical” “modern”
E E regime interpolating regime
\ ® -
~ o Training risk ~ Training risk:
sweet spot_ . —~ _ T~ . _interpolation threshold
Complexity of H Complexity of H
(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

Belkin, Hsu, Ma, Mandal ‘18

* There are cases where the model gets bigger, yet the (test!)
loss goes down, sometimes even lower than in the classical
“under-parameterized” regime.

« Complexity: number of parameters.

Double descent

Widespread phenomenon, across architectures (Nakkiran et al.
'19):

0.8 \ (% label nolse | (% label nolse
—— 10% label noise 0.4 — 5% label noise
0.7 20% label noise | -~ 10% label noise
' 15% label noise
E 0.6 ? 0.3 N 20% label noise
w w
i i
g R £0.2
0.4
0.1
0.3 |
1 10 20 30 40 50 60 64 1 10 20 30 40 50 60 64
ResNet18 Width Parameter ResNet18 Width Parameter
08 | 0.5 |
% §
§
\ 0.4 H
- 06 ' [.
2 B | B
w w03 ’
c < 1
-E 04 -§
[t = 0.2

o

(]
(=]
A

003 10 20 30 40 50 60 64 00— 10 20 30 40 50 60 64
ResNet18 Width Parameter ResNet18 Width Parameter

(a) CIFAR-100. There is a peak in test error even (b) CIFAR-10. There is a “plateau” in test error
with no label noise. around the interpolation point with no label noise,
which develops into a peak for added label noise.

Double descent

Widespread phenomenon, across architectures (Nakkiran et al.
'19):

— De-En
5.5 —— En-Fr
v
85.0°
g
245
4.0
100 200 300 400 500

Transformer Model Size (Embedding Dimension)

Double descent

Widespread phenomenon, also in kernels (can be formally proved
in some concrete settings [Mei and Montanari "20]), random
forests, etc.

3 T 1 T
= Prediction = Prediction
¢ d=100 0.9 d d=100 |
o5k F d=200 | F d=200

P d = 300 o.8~¥ /;\ d=300 |-
0.7F 'y 4 |
2+ § - _

151

"y 2 “ 1 o3t w\
\; Y 7 \
W

Test error

Test error
o
(4]

0.2
0.5 1
Y 0.1
O 1 1 1 1 1 "I 1 Il 0 1 1 1 1 1 1 1 1 1
o 05 1 15 2 25 3 35 4 45 5 o 05 1 15 2 25 3 35 4 45 5

1 /e = N/n 1/ = N/n

Double descent

Also in other quantities such as train time, dataset, etc (Nakkiran
et al. '19):

Test Error

Tos ‘ Train Error .80
' . Interpolation
Model-wise : i Threshold
Double Descent 1
: 0.6 1k 0.60
Epoch-wise C
Double Descent '
04 0.40
100
0.3
0.20
02 10
‘ 1 0.01
1 15 30 45 60 1 15 30 45 60
ResNet1l8 Width Parameter ResNetl8 Width Parameter

Figure 2: Left: Test error as a function of model size and train epochs. The horizontal line corre-
sponds to model-wise double descent—varying model size while training for as long as possible. The
vertical line corresponds to epoch-wise double descent, with test error undergoing double-descent
as train time increases. Right Train error of the corresponding models. All models are Resnet18s
trained on CIFAR-10 with 15% label noise, data-augmentation, and Adam for up to 4K epochs.

Double descent

Optimal regularization can mitigate double descent [Nakkiran et
al. '21]:
Effect of Regularization: CNNs on CIFAR-100

0.9 - = Unregularized
—— A =0.0005
—— A =0.001
08 —— A =0.003
A =0.005
A =0.01
Optimally Regularized
o 0.7
=
L
3
— 0.6 e
0.5
H__—_'_-‘_________,_._—-0
0.4 -
0 10 20 30 40 50 60

CNN Model Size (width)

Double descent

Optimal regularization can mitigate double descent [Nakkiran et

al. '21]:

Test Error for Regularized Random Features

0.94

0.8

o
N

o
)

Expected Test Error
o
wv

o
~

0.3

0.24

—— A=2"2g
—— A=2"10g
—— A=27%

A=2"%d

A=2"2d
A=2%
A=22d

0 200 400 600
Num Samples

a) Test Classification Error vs. Number of Train-

ng Samples.

Test Error for Regularized Random Features

0.9 A=2"204
—— A=2"10g
—— A=276gd
0.8 A=2"4d
A=2"2d
A=20
A=22d
0.7
—
o
—_
—
i
+ 0.6
(7))
(0]
'_
©
@
0 05
@
o
x
[NN]
0.4
0.3
e N e
0.2 1
0 200 400 600 800 1000

Model Size (Num Features)

(b) Test Classification Error vs. Model Size (Num-

ber of Random Features).

Implicit Regularization

Different optimization algorithm
=» Different bias in optimum reached
=>» Different Inductive bias
=>» Different generalization properties

Implicit Bias

Margin:

 Linear predictors:

« Gradient descent, mirror descent, natural gradient descent,
steepest descent, etc maximize margins with respect to
different norms.

 Non-linear:

« Gradient descent maximizes margin for homogeneous neural
networks.

« Low-rank matrix sensing: gradient descent finds a low-rank
solution.

Separation between NN and kernel

* For approximation and optimization, neural network has no
advantage over kernel. Why NN gives better performance:
generalization.

» [Allen-Zhu and Li '20] Construct a class of functions & such that
y = f(x) for some f € F:
* no kernel is sample-efficient;
» Exists a neural network that is sample-efficient.

