Non-convex
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Gradient descent finds global minima

Practice: gradient descent
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Understanding DL Requires Rethinking Generalization



Types of stationary points

» Stationary points: x : Vf(x) =0
* Global minimum:
X f(x) < f(xVx' € R?
e Local minimum:
x:fx) < fOVXlx—x| <e
e Local maximum:
X fx) = fOOVX L lx—x| <€
« Saddle points: stationary points
that are not a local min/max




Landscape Analysis

« All local minima are global!
» Gradient descent can escape saddle points.



Strict Saddle Points (Ge et al. ’15, Sun et al. ’15)

saddle point
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« Strict saddle point: a saddle point and 4. ( V2f(x)) < 0



Escaping Strict Saddle Points

» Noise-injected gradient descent can escape strict saddle points
in polynomial time [Ge et al., '15, Jin et al., "17].

 Randomly initialized gradient descent can escape all strict
saddle points asymptotically [Lee et al., "15].

« Stable manifold theorem.

 Randomly initialized gradient descent can take exponential time
to escape strict saddle points [Du et al., "17].
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If 1) all local minima are global, and 2)
are saddle points are strict, then
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What problems satisfy these two conditions

» Matrix factorization
« Matrix sensing

« Matrix completion
 Tensor factorization

» Two-layer neural network with quadratic activation



What about neural networks?

 Linear networks (neural networks with linear activations
functions): all local minima are global, but there exists saddle
points that are not strict [Kawaguchi "16].

* Non-linear neural networks with:
* Virtually any non-linearity,
* Even with Gaussian inputs,

« Labels are generated by a neural network of the same
architecture,

There are many bad local minima [Safran-Shamir '18, Yun-Sra-
Jadbaie "19].



Global convergence of
gradient descent
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Global convergence of gradient descent

Theorem (Du et al. '18, Allen-Zhu et al. "18, Zou et al '19) If the
width of each layer is poly(n) where n is the number of data.
Using random initialization with a particular scaling, gradient
descent finds an approximate global minimum in polynomial time.



Gradient Flow: a Kernel Point of View
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