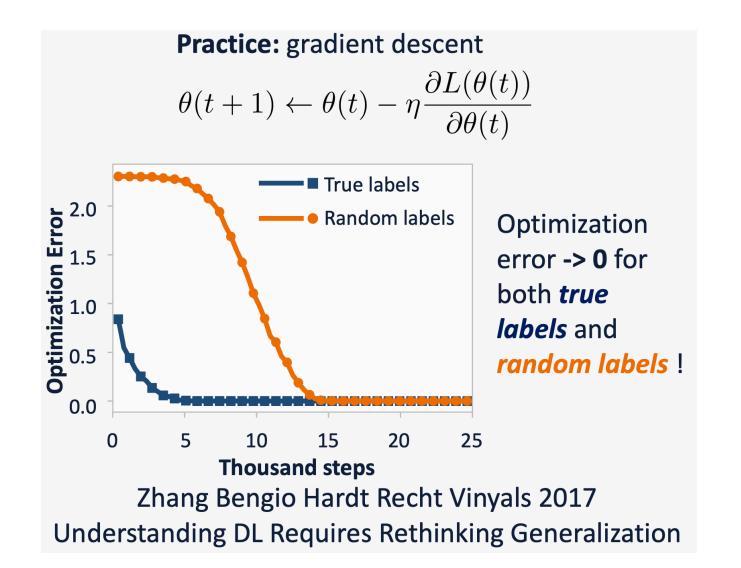
Non-convex Optimization Landscape

Gradient descent finds global minima

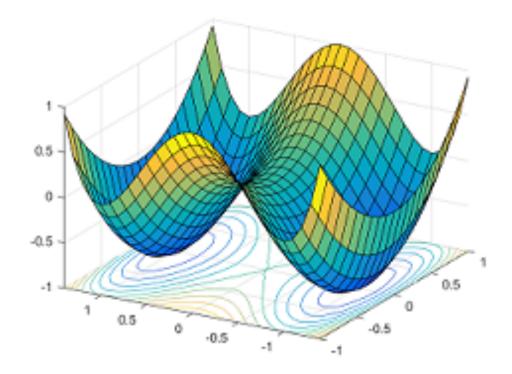


Types of stationary points

- Stationary points: $x : \nabla f(x) = 0$
- Global minimum: $x : f(x) \le f(x') \forall x' \in \mathbb{R}^d$
- Local minimum: $x : f(x) \le f(x') \forall x' : ||x - x'|| \le \epsilon$
- Local maximum: $x : f(x) \ge f(x') \forall x' : ||x - x'|| \le \epsilon$
- Saddle points: stationary points that are not a local min/max

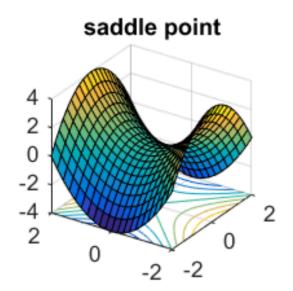


Landscape Analysis



- All local minima are global!
- Gradient descent can escape saddle points.

Strict Saddle Points (Ge et al. '15, Sun et al. '15)

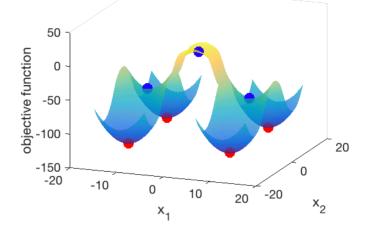


• Strict saddle point: a saddle point and $\lambda_{\min}(\nabla^2 f(x)) < 0$

Escaping Strict Saddle Points

- Noise-injected gradient descent can escape strict saddle points in polynomial time [Ge et al., '15, Jin et al., '17].
- Randomly initialized gradient descent can escape all strict saddle points asymptotically [Lee et al., '15].
 - Stable manifold theorem.
- Randomly initialized gradient descent can take exponential time to escape strict saddle points [Du et al., '17].

If 1) all local minima are global, and 2) are saddle points are strict, then noise-injected (stochastic) gradient descent finds a global minimum in polynomial time



What problems satisfy these two conditions

- Matrix factorization
- Matrix sensing
- Matrix completion
- Tensor factorization
- Two-layer neural network with quadratic activation

What about neural networks?

• Linear networks (neural networks with linear activations functions): all local minima are global, but there exists saddle points that are not strict [Kawaguchi '16].

- Non-linear neural networks with:
 - Virtually any non-linearity,
 - Even with Gaussian inputs,
 - Labels are generated by a neural network of the same architecture,

There are many bad local minima [Safran-Shamir '18, Yun-Sra-Jadbaie '19].

Global convergence of gradient descent

Global convergence of gradient descent

Theorem (Du et al. '18, Allen-Zhu et al. '18, Zou et al '19) If the width of each layer is poly(n) where n is the number of data. Using random initialization with a particular scaling, gradient descent finds an approximate global minimum in polynomial time.