Clarke Differential




Clarke Differential

Definition: Given f : RY — R, for every x, the Clark differential
IS defined as
of(x) £ conv ({s € R?: {x,}2, = x, { V() 12, — s}).

The elements in the subdifferential set are subgradients.



When does Clarke differential exists

Definition (Locally Lipschitz): f : R4 - R is locally Lipchitz if
Vx € R there exists a neighborhood S of x, such that f is
Lipchitz in S.



Positive Homogeneity

Definition:Ef: R? — R is positive homogeneous of degree L if
flax) = a~f(x) forany a > 0.



Positive Homogeneity



Positive Homogeneity



Positive Homogeneity and Clark Differential

Lemma: Suppose f : R? - R is Locally Lipschitz and L
-positively homogeneous. For any x € R¢ and s € 9f(x), we
have (s, x) = Lf(x).



Norm Preservation
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Gradient flow and gradient inclusion

Discrete-time dynamics can be complex. Let's use continuous-
time dynamics to simplify:
x(2)

Gradient flow: x,, ; = x, — n Vf(x,) = ? = — V/f(x(?))

x(1)
€ df(x(1))

Gradient inclusion:



Norm preservation by gradient inclusion

Theorem (Du, Hu, Lee '18) Suppose a > 0,

f(x, (WH+1’ ceos 0(‘/Vl-, S Wl)) — af(x, (WH-I—l’ .o Wl))’ I.e.,
predictions are 1-homogeneous in each layer. Then for every pair

of layers (i, j) € [H + 1] X [H + 1], the gradient inclusion
maintains: for all > 0,

1 2 1 2 1 2 1 2
EHWh(t)”F — EHWh(O)”F = E“Wh(f)”F — E”Wh(o)”F



Optimization Methods
for Deep Learning




Gradient descent for non-convex optimization

Decsent Lemma: Let f : RY — R be twice differentiable, and
||V2f||2 < f. Then setting the learning rate n = 1/, and
applying gradient descent, x, . ; = x, — n Vf(x,), we have:

1
Jx) = fxyy) 2 ﬁllvf(xt)llg-



Converging to stationary points

Theorem: In T = 0(%) iterations, we have [|Vf(x)||, L e.
€



Gradient Descent for Quadratic Functions

Problem: min —x ' Ax with A € R%“ being positive-definite.
X

Theorem: Let A_ .. and A . be the largest and the smallest

1

eigenvalues of A. If we set < , we have

5
1115 < (1 = 74min) 1%l

max



Momentum: Heavy-Ball Method (Polyak ’64)

Problem: min f(x)
X

Method: v, ; = — Vf(x,) + pv,
Xep1 = X+ NV




Momentum: Nesterov Acceleration (Nesterov '89)

Problem: min f(x)
X

Method: v, | = — Vf(x, + pv,) + pv,
X1 = X+ Ve

Polyak's Momentum Nesterov Momentum




Newton’s Method

Newton’s Method: x,, ; = x, — n( V*f(x,)) ™! Vf(x,)
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AdaGrad (Duchi et al. ’11)

Newton Method: x,, | = x, — n( V>f(x,))~! Vf(x,)
AdaGrad: separate learning rate for every parameter

t—1
Xyl = Xy — n(GH-l + 61)_1 Vf(xt)’ (Gt i — Z (Vf(xf)i)z

\Z




RMSProp (Hinton et al. ’12)

AdaGrad: separate learning rate for every parameter

r—1
Xoor = 3= Gy + €DV, (G = | Y (VF),)

\2

RMSProp: exponential weighting of gradient norms
Xep1 = X —N(Gyq + 61)_1/2 Vx), ,
(Gt+1)ii — IB(Gt)ii + (1 _ ﬂ)( Vf(xt)i)




AdaDelta (Zeiler ’12)

RMSProp:
X1 =X —n(Gy + GI)_1/2 Vi(x,),
(Gt+1)ii — IB(Gt)ii + (1 — ﬂ)( Vf(xt)i)z

AdaDelta:

X1 = X, — nAx,

Ax, = /u,+¢€- (G, +e) *Vfix)
(Gz+1)ii — p(Gt)ii + (1 — ,0)( Vf(xz)i)z,
U = pu,+ (1 = p)||Ax||3



Adam (Kingma & Ba ’14)

Momentum:

Vip1 = — V) + v X = X+ v
RMSProp: exponential weighting of gradient norms

X1 =X — (G + e} Vf(x,),
(Gy);; = P(GY;; + (1 = p)( Vf(xt)i)z
Adam

Vg1 = P+ (1 = B VIx,)

(Gt+1)ii — ﬁz(Gt)ii + (1 _ ﬂz)( Vf(xt)i)z

—1/2
X1 =X — (G + )"y

Default choice nowadays.



Are these actually useful
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Figure 1: Training (left) and top-1 test error (right) on CIFAR-10. The annotations indicate where the
best performance is attained for each method. The shading represents + one standard deviation computed

across five runs from random initial starting points. In all cases, adaptive methods are performing worse on
both train and test than non-adaptive methods.

Wilson, Roelofs, Stern, Srebro, Recht ‘18




