
Approximation Theory

Proposal Due 1 13 11 59PM

Specific Setups

■ “Average” approximation: given a distribution

■ “Everywhere” approximation

μ
∥f − g∥μ = ∫x

| f(x) − g(x) |dμ(x)

∥f − g∥∞ = sup
x

| f(x) − g(x) | ≥ ∥f − g∥μ

Multivariate Approximation

Theorem: Let be a continuous function that satisfies
 (Lipschitzness).

Then there exists a 3-layer ReLU neural network with

 nodes that satisfy

g
∥x − x′ ∥∞ ≤ δ ⇒ |g(x) − g(x′) | ≤ ϵ

O(1
δd)

∫[0,1]d
| f(x) − g(x) |dx = ∥f − g∥1 ≤ ϵ

Figure credit to Andrej Risteski

Universal Approximation

Definition: A class of functions is universal
approximator over a compact set (e.g.,), if for
every continuous function and a target accuracy ,
there exists such that

ℱ
S [0,1]d

g ϵ > 0
f ∈ ℱ

sup
x∈S

| f(x) − g(x) | ≤ ϵ

Stone-Weierstrass Theorem

Theorem: If satisfies
1. Each is continuous.
2.
3.
4. is closed under multiplication and vector space

operations,
Then is a universal approximator:

.

ℱ
f ∈ ℱ

∀x, ∃f ∈ ℱ, f(x) ≠ 0
∀x ≠ x′ , ∃f ∈ ℱ, f(x) ≠ f(x′)
ℱ

ℱ
∀g : S → R, ϵ > 0,∃f ∈ ℱ,∥f − g∥∞ ≤ ϵ

check wiki

Tate t.net y

Example: cos activation 6 activation

FG.d.me xHaT6 WXtb a ER

Weather
Ibd I 0 To dim

430 fyfgaicostwixth
Fcosid it universal

Pt Off E Fiosd 7 s continuous six Eiglatvixt

DX cos o x cool I

F G E Fooled It 9 f Fios d

2ft all 2105141
101121 10114421 10114

2

text 51 1 2 Igaicostwixtbil ETC

coscvixtdjD.IETiostwituixhdTtcosfgMxthid
D

Example: cos activation

X X at tatted
define to coffiti let

fit to a

text 109101

12

Other Examples

Exponential activation

ReLU activation

Texted it universal

Thon 6 continuous 1,46121 0,11 6144

Ibid is universal 71
use ReLO to approximate

Curse of Dimensionality

■ Unavoidable in the worse case let

Barron’s Theory

■ Can we avoid the curse of dimensionality for “nice” functions?
■ What are nice functions?

■ Fast decay of the Fourier coefficients

■ Fourier basis functions:

■ Fourier coefficient:

■ Fourier integral / representation:

{ew(x) = ei⟨w,x⟩ = cos(⟨w, x⟩) + i sin(⟨w, x⟩) ∣ w ∈ ℝd}

̂f(w) = ∫ℝd
f(x)e−i⟨w,x⟩dx

f(x) = ∫ℝd

̂f(w)ei⟨w,x⟩dw

time G frequency

F

th

i

Barron’s Theorem

Theorem (Barron ‘93): For any where
 is the unit ball, there exists a

3-layer neural network with neurons and

sigmoid activation function such that

.

g : 31 → ℝ
31 = {x ∈ ℝ : ∥x∥2 ≤ 1}

f O(C2

ϵ
)

∫31

(f(x) − g(x))2dx ≤ ϵ

Definition: The Barron constant of a function is:

.

f
C ≜ ∫ℝd

∥w∥2| ̂f(w) |dw

te Ia

Examples

■ Gaussian function:

■ Other functions:
■ Polynomials
■ Function with bounded derivatives

f(x) = (2πσ2)d/2exp (− ∥x∥2
2

2σ2)
I W ext LIKE Gaussian

let 22127112 normalization
distribution

fawn I FuldW Z Sz IlWilz Ita law

Elix Esea ez ETIM
s

z fo lid
it t is small

Proof Ideas for Barron’s Theorem

Step 1: show any continuous function can be written as an infinite
neural network with cosine-like activation functions.
(Tool: Fourier representation.)

Step 2: Show that a function with small Barron constant can be
approximated by a convex combination of a small number of
cosine-like activation functions.
(Tool: subsampling / probabilistic method.)

Step 3: Show that the cosine function can be approximated by
sigmoid functions.
(Tool: classical approximation theory.)

Fine

Simple Infinite Neural Nets

Theorem: Suppose is differentiable, if

, then

g : ℝ → ℝ
x ∈ [0,1] g(x) = ∫

1

0
1{x ≥ b} ⋅ g′ (b)db + g(0)

Definition: An infinite-wide neural network is defined by a
signed measure over neuron weights

.

ν (w, b)
f(x) = ∫w∈ℝd,b∈ℝ

σ(w⊤x + b)dν(w, b)

I rub out

i

Sum

Pt by Fundamental theorem of Catulus

got 910 t S f g bi db

Scott got 1 Sables
blab

Step 1: Infinite Neural Nets

The function can be written as

.f(x) = f(0) + ∫ℝd
| ̂f(w) | (cos(bw + ⟨w, x⟩) − cos(bw))dw

first layer
A

say
imagine a

p guttate
f

veal

Step 1: Infinite Neural Nets Proof

The function can be written as

.f(x) = f(0) + ∫ℝd
| ̂f(w) | (cos(bw + ⟨w, x⟩) − cos(bw))dw

Pt title gad few
etc d w

Saa Indu fad tale's il aw

Flat Falle Tyga tape le Idw

Sadiya pilbwtwxneibnjdwfe.it

colatisinia Ifcoh Sad Fm co bateaux 10lb dw

f realfunction

Step 2: Subsampling

Writing the function as the expectation of a random variable:

.f(x) = f(0) + ∫ℝd

| ̂f(w) |∥w∥2
C (C

∥w∥2
(cos(bw + ⟨w, x⟩) − cos(bw))) dw

00

Idea construct a distribution over W bw

Sza 114 San Italia
Dw 8 149

Typos butch Md
tu tu't Ew Dw

Step 2: Subsampling

Writing the function as the expectation of a random variable:

.

Sample one with probability for times.

f(x) = f(0) + ∫ℝd

| ̂f(w) |∥w∥
C (C

∥w∥ (cos(bw + ⟨w, x⟩) − cos(bw))) dw

w ∈ ℝd | ̂f(w) |∥w∥2
C

r

Twi i Wr inttentuatinTequality

tiostfEYuiyloscwitcw.im 1 It
c error r o

Step 3: Approximating the Cosines

Lemma: Given ,

there exists a 2-layer neural network of size with
sigmoid activations, such that .

gw(x) = C
∥w∥2

(cos(bw + ⟨w, x⟩) − cos(bw))
f0 O(1/ϵ)

sup
x∈[−1,1]

| f0(y) − hw(y) | ≤ ϵ

Tse l d construction

Depth Separation

So far we only talk about 2-layer or 3-layer neural networks.

Why we need Deep learning?

Can we show deep neural networks are strictly better than
shallow neural networks?

A brief history of depth separation

Early results from theoretical computer science

Boolean circuits: a directed acyclic graph model for computation
over binary inputs; each node (“gate”) performs an operation (e.g.
OR, AND, NOT) on the inputs from its predecessors.

depth

A brief history of depth separation

Early results from theoretical computer science

Boolean circuits: a directed acyclic graph model for computation
over binary inputs; each node (“gate”) performs an operation (e.g.
OR, AND, NOT) on the inputs from its predecessors.

Depth separation: the difference of the computation power:
shallow vs deep Boolean circuits.

Håstad (’86): parity function cannot be approximated by a small
constant-depth circuit with OR and AND gates.

Modern depth-separation in neural networks

• Related architectures / models of computation
• Sum-product networks [Bengio, Delalleau ’11]

• Heuristic measures of complexity
• Bound of number of linear regions for ReLU networks

[Montufar, Pascanu, Cho, Bengio ‘14]

• Approximation error
• A small deep network cannot be approximated by a small

shallow network [Telgarsky ’15]

Shallow Nets Cannot Approximate Deep Nets

Theorem (Telgarsky ’15): For every , there exists
a function representable as a network
of depth , with nodes, and ReLU activation
such that, for every network of depth
and nodes, and ReLU activation, we have

.

L ∈ ℕ
f : [0,1] → [0,1]

O(L2) O(L2)
g : [0,1] → ℝ L

≤ 2L

∫[0,1]
| f(x) − g(x) |dx ≥ 1

32

IF

Constant

Intuition

A ReLU network is piecewise linear, we can subdivide domain
into a finite number of polyhedral pieces such
that in each piece, is linear: .

f
(P1, P2, . . . , PN)

f ∀x ∈ Pi, f(x) = Aix + bi

Deeper neural networks can make exponentially more regions
than shallow neural networks.
Make each region has different values, so shallow neural
networks cannot approximate.

y

Benefits of depth for smooth functions

Theorem (Yarotsky ’15): Suppose has
all partial derivatives of order with coordinate-wise
bound in , and let be given. Then there

exists a - depth and -size network so

that .

f : [0,1]d → ℝ
r

[−1,1] ϵ > 0

O(ln 1
ϵ

) (1
ϵ)

O(d
r)

sup
x∈[0,1]d

| f(x) − g(x) | ≤ ϵ

E

Remarks

• All results discussed are existential: they prove that a good
approximator exists. Finding one efficiently (e.g., using gradient
descent) is the next topic (optimization).

• The choices of non-linearity are usually very flexible: most
results we saw can be re-proven using different non-linearities.

• There are other approximation error results: e.g., deep and
narrow networks are universal approximators.

• Depth separation for optimization and generalization is widely
open.

at
Tuanform

