Approximation Theory
Expressive: Functions in class can represent “complicated” functions.
Linear Function

best linear fit
Review: generalized linear regression

Transformed data:

\[h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix} \]

Hypothesis: linear in \(h \)

\[y_i \approx h(x_i)^T w \]
Review: Polynomial Regression
Approximation Theory Setup

- Goal: to show there exists a neural network that has small error on training / test set.

- Set up a natural baseline:

\[
\inf_{f \in \mathcal{F}} L(f) \text{ v.s. } \inf_{g \in \text{continuous functions}} L(g)
\]
Example
Decomposition
Specific Setups

- "Average" approximation: given a distribution μ
 \[\|f - g\|_\mu = \int |f(x) - g(x)| \, d\mu(x) \]

- "Everywhere" approximation
 \[\|f - g\|_\infty = \sup_x |f(x) - g(x)| \geq \|f - g\|_\mu \]
Polynomial Approximation

Theorem (Stone-Weierstrass): for any function f, we can approximate it on any compact set Ω by a sufficiently high degree polynomial: for any $\epsilon > 0$, there exists a polynomial p of sufficient high degree, s.t.,

\[
\max_{x \in \Omega} |f(x) - p(x)| \leq \epsilon.
\]

Intuition: Taylor expansion!
Kernel Method

Polynomial kernel

Gaussian Kernel
Theorem: Let $g : [0,1] \rightarrow R$, and ρ-Lipschitz. For any $\epsilon > 0$, \exists 2-layer neural network f with $\left\lceil \frac{\rho}{\epsilon} \right\rceil$ nodes, threshold activation: $\sigma(z) : z \mapsto 1\{z \geq 0\}$ such that
$$ \sup_{x \in [0,1]} |f(x) - g(x)| \leq \epsilon. $$
Proof of 1D Approximation
Theorem: Let g be a continuous function that satisfies $\|x - x'\|_\infty \leq \delta \Rightarrow |g(x) - g(x')| \leq \epsilon$ (Lipschitzness). Then there exists a 3-layer ReLU neural network with $O\left(\frac{1}{\delta^d}\right)$ nodes that satisfy

$$\int_{[0,1]^d} |f(x) - g(x)| \, dx = \|f - g\|_1 \leq \epsilon$$

Figure credit to Andrej Risteski
Partition Lemma

Lemma: let g, δ, ϵ be given. For any partition P of $[0,1]^d$, $P = (R_1, \ldots, R_N)$ with all side length smaller than δ, there exists $(\alpha_1, \ldots, \alpha_N) \in \mathbb{R}^N$ such that

$$\sup_{x \in [0,1]^d} |g(x) - h(x)| \leq \epsilon$$

with $h(x) := \sum_{i=1}^{N} \alpha_i 1_{R_i}(x)$.

Figure credit to Andrej Risteski
Proof of Partition Lemma
Proof of Multivariate Approximation Theorem
Proof of Multivariate Approximation Theorem
Universal Approximation

Definition: A class of functions \mathcal{F} is universal approximator over a compact set S (e.g., $[0,1]^d$), if for every continuous function g and a target accuracy $\epsilon > 0$, there exists $f \in \mathcal{F}$ such that
\[
\sup_{x \in S} |f(x) - g(x)| \leq \epsilon
\]
Stone-Weierstrass Theorem

Theorem: If \mathcal{F} satisfies

1. Each $f \in \mathcal{F}$ is continuous.
2. $\forall x, \exists f \in \mathcal{F}, f(x) \neq 0$
3. $\forall x \neq x', \exists f \in \mathcal{F}, f(x) \neq f(x')$
4. \mathcal{F} is closed under multiplication and vector space operations,

Then \mathcal{F} is a universal approximator:

$$\forall g : S \to R, \epsilon > 0, \exists f \in \mathcal{F}, \|f - g\|_{\infty} \leq \epsilon.$$
Example: cos activation
Example: cos activation
Other Examples

Exponential activation

ReLU activation
Curse of Dimensionality

- Unavoidable in the worse case

- Barron’s theory
Recent Advances in Representation Power

- Depth separation
- Analyses of different architectures
 - Graph neural network
 - Attention-based neural network
- Finite data approximation
- …