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Learning & Generalization

Saddle Point

ArCh ite Ctu re Explaination
e.g. CNN
ﬂ Training Algorithm
ﬂ N Use
ﬂ a @ Regularization/SGD/...
l’ - to find

Flatter minima/min norm
N - — minimay....

=
=
w
=
&
=
b
-
-
>
K. |
o



Learning & Generalization

Question: What type of feature do neural networks prefer to learn?

* Generalization

Class: traffic light

* Pretraining
- Learning features is more important than finding minima.

Task 1 Task 2
* Red/ Green light? l Task 3
Pretrained Task 4

Model Task ...



Outline

Understanding neural network training from the perspective of feature
learning

 Motivation

* Two examples:
 How does data augmentation help supervised learning tasks?
* How does using pretraining help training datasets with spurious correlations?
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Data augmentation

* How does data augmentation help supervised learning tasks?

* Previous approach: Incorporate invariance? Chen, Dobriban, Lee, 2020; Mei,
Misiakiewicz, Montanari, 2021




Role of data augmentation

Incorporate invariances?

e Data augmentation causes the network to learn invariance only for images that are
very similar to those seen during training. Azulay and Weiss, 2019




Role of data augmentation

Incorporate invariances?

Even one fixed data augmentation helps.
e Random horizontal flip + random crop (4 pixels)

* Data augmentation fixed throughout training once selected.
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Role of data augmentation

Incorporate invariances?

Even one fixed data augmentation helps.
e Random horizontal flip + random crop (4 pixels)
* Data augmentation fixed throughout training once selected.
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Role of data augmentation

Incorporate invariances?

* Invariance only for images similar to those seen during training. (Azulay and Weiss,
2019)

* Even one fixed data augmentation helps.

* Not real “invariance”

Alternative explanation of data augmentation from the perspective of feature learning

* Feature manipulation in gradient descent dynamics

e.g., Data augmentation increases the relative importance of “good” features compared
to “bad” or “spurious” features



Feature manipulation viewpoint: bad features
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Bad & Esy fo’rures: spurious feature/large noise
« “"road" feature could have a larger contribution to gradients
« The car can be too tiny or blurry that the model memorizes it by overfitting noise parts of

the images
- data augmentation could make bad & easy features harder 1o detect



Data augmentation as feature manipulation

Consider three types of features

1. “good” & “easy to learn”
— accurate features with large contribution in gradients

2. “good” & “hard to learn”
— accurate features with small contribution to gradients

3. “bad” & “easy to learn”

— inaccurate features with large contribution to gradients

Gradient descent learns by fitting data with (1)&(3) first before using (2)

Data augmentation can be viewed as manipulation of relative contribution of “good” and “bad”
features in the gradients, i.e., make (2) -> (1), or make (3) -> “bad” & “hard to learn”




Data augmentation as feature manipulation
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Learning & Generalization: Multi-view data
M Od e ‘ Allen-zhu & Li (2019)

Two classes y € {_1,1} One patch contains the One patch contains the
“good” feature: dominant “bad” features:
Inputs x has P patches x = (xq,x5,...,Xp) € yv, k € {1,..,K}
RAXP (Pk) A
!
Good features vq, V5, ... X X, X3

* Data augmentation: v, — vy,

* Asimplified model: One patch x; contains
feature vy,

Noise feature ¢: One patch x; contains ¢.

C channel
b patchwise
convolution




Patchwise convolutional model

gradient descent on logistic loss

L(w) = > log(1 + exp(—yf(w,x)))

(Xay) eDtrain or ,D(aug)

train

Fow,x) =) > 1h(x, - we)

X 4
C channel channels patches

4 | patchwise
N // convolution
Y sign(z) - %|z|‘1 if 2| <1
Y(z) = z—9;—1 ifz>1 -
2+ 1= if 2 <1




Learning dynamics with gradient descent

logistic loss L(w) = Z log(1 + exp(—y f(w,x)))
(X,4) € Diyain or D208
over all datapomts over all patches

Learning dynamic of d’wc v = 1+ 0(1) S‘ S‘ Y’ (|we - x(’t)|)y(%)x(2) -

“good” feature vy: dt 2n e pelP
— 1 +20(1) Pfc¢’(|wc . ’Uk|) + small order terms*
"™ Fraction of datapoints with Vg
Learning dynamic of =4, . £(1) — U (|we - )|y 20) . @)
~ (1 +o(1))?

- > $yD oy (Jwe - €D])  + small order terms*
n

*under assumptions on feature and noise



Learning dynamics with gradient descent

d
Learning dynamic of “good” feature vy: g We " Vk N pret)’ (|we - vg|)
Learning dynamic of noise £®: %wc ) %Ugy(i)¢'(|wc ¥3d)

f(w,x) = ZZ¢(Xp ‘W)

* For a datapoint with v, and ¢, training accuracy is good if w, - v} large or w, - y¢ large.

* If py is “small” compared to gz and n,
* w, - & grows faster than w, - vy, .
* the model will classify the datapoint by overfitting to noise €.

Data augmentation:
* “good” and “hard” -> “good” and “easy”: Increase pj, of rare views k.

* “bad” and “easy” -> “bad” and “hard”: Increase n (through perturbing ¢).



Outline

Understanding neural network training from the perspective of feature
learning

 Motivation

* Two examples:
 How does data augmentation help supervised learning tasks?
 How does using pretraining help classifying datasets with spurious correlations?



Pretraining

Pretraining a model on a large dataset before transferring to a downstream can substantially
improve accuracy over training from scratch.
e.g., ResNet-50 on unlabeled ImageNet boosts accuracy on CIFAR-10 from 94% to 98%

Task 1 Large dataset
Task 1 Task 2 k Vision: CLIP, DINO, ...
l Uzl & NLP: Bert, Roberta, T5, GPT, ChatGPT....
Pretrained Task 4 Task 2,3,4,... Small dataset
Model Task ...

Fine tuning/Freeze & Fine-tune/Linear
Probing/...



Waterbirds
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3498 training examples

56 training examples

Water
background

184 training examples

1057 training examples

Much more waterbirds on water (landbirds
on land) than waterbirds on land
(landbirds on water).

In this dataset, the background feature is a
spurious feature.

SOTA results on Waterbirds (and other
datasets with spurious correlations) uses
pretrained model [Liu et al. 2021].

Why does using pretrained model help?



Why using pretrained model help?

* Possibility 1:

e Pretraining projects out the spurious feature (background feature).

Land Water
background background

e
)
!

Landbird

M A 17
Ve o, L
4 <A..,‘ '-‘
— 3498 training examples 184 training examples

Waterbird

Pretrained model learns to use the
foreground tO predict. 56 training examples 1057 training examples

Use foreground(waterbird/landbird) to
predict.



Why using pretrained model help?

* Possibility 1:

* Pretraining projects out the spurious feature.

Cat/Dog images with
spurious feature

leat = 12, rdog = 19
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Accuracy approaches 50% - random guess.
The model does not learn any cat/dog
feature at all.

Step 1: Pretrain ResNest20 on Cat/Dog
without the spurious feature.

Step 2: Freeze & Fine-tune on Cat/Dog
with 100% spurious feature.

Full fine-tuning 02.87+1.55
Freeze conv and block 1 54.63+1.07
Freeze conv and blocks 1-2 | 68.37+¢.67
Freeze conv and blocks 1-3 | 84.9.4¢.46

Fig: Test accuracy on dataset
without the spurious feature.



Why using pretrained model help?

* Possibility 1:

* Pretraining projects out the spurious feature.

Step 1: Pretrain ResNest20 on Cat/Dog without the spurious feature.
Step 2: Freeze & Fine-tune on Cat/Dog with the spurious feature.

Pretraining projects out the spurious feature this case.

What about larger models?



CLIP

1. Contrastive pre-training

pepper the Toxt
aussie pup Encoder

Image
Encoder

[Radford et al. 2021]
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CLIP

 Radford et al. trained CLIP on 5 ResNets and 3 Vision
Transformers.

* ResNet-50, ResNet-101, RN50x4, RN50x16, and
RN50x64

* ViT-B/32, a ViT-B/16, and a ViT-L/14

Pretrained on a WeblmageText (WIT) dataset

e 37.6 million entity rich image-text examples with 11.5
million unique images across 108 Wikipedia languages

ResNet50 Model Architecture
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Why using pretrained model help?

* Possibility 1:
* Pretraining projects out the spurious feature (background feature).

e How do we test? We consider two tasks on the waterbirds dataset.

Land Water F
background background background
=
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3498 training examples 184 training examples
e
2
&
=

56 training examples 1057 training examples PRSI 1057 rsining examples

Foreground Prediction Background Prediction



Why using pretrained model help?

* Possibility 1:

* Pretraining projects out the spurious feature (background feature).

Foreground | Background
Full Fine-tuning 61.99 88.96
Freeze embed 74.04 88.78
Freeze embed & layers 1-3 73.94 87.85
Freeze embed & layers 1-6 76.01 89.15
Freeze embed & layers 1-9 72.79 89.12
Freeze embed & layers 1-12 74.66 88.94

Fig: Worst group accuracy of fine-tuning CLIP

ViT-B/16 on Waterbirds.

 The amount of information preserved from pretraining:
Full Fine-tuning < Freeze embed < freeze embed &
layer 1-3 < ...

e Accuracy increases as we preserving more information.
(Freezing too many layer is bad because there won’t
be enough capacity to adapt to the downstream task)

* Preserving information from the pretrained model helps

both foreground prediction and background prediction.
-> Pretraining does not project out the background.



Why using pretrained model help?

* Possibility 2:
* Pretraining projects out the noise.

Land Water .
background background How does the model overfit?

If the true feature is not used,

R Bhled | | . .
E T A% m’ * Overfit the spurious feature (background)

AR - TN . . .
= \ iy Classify Waterbirds on Water and Landbirds on Land
= R R correctly.

3498 training examples 184 training examples What about Waterbirds on Land and Landbirds on Water?

= e OQOverfit the noise
:‘.:-
@ . L . .
g Preventing the model from overfitting the noise can also motivate

the model to use the true feature!

56 training examples 1057 training examples



Theory

Inputs x has P patches x = (x¢, x5, ..., Xp) € RAXP

Good features v

Noise feature

True feature Spurious feature Noise

Spurious features u
p \xl x2 &3 X4 / x5

How fast the model learns a feature depends on the
magnitude and the frequency of the feature.

: . X
Learning dynamic of feature v:
d 1+o(1
S We V= > ( )p¢/(|wc -v|)||v||3 +small order terms*
Frequency Magnitude C channel
. S . . . patchwise
Pretraining diminishes the magnitude of noise/spurious feature convolution

-> The model can’t use the noise/spurious feature to overfit
-> The model is forced to use the true feature



Summary

* Understanding neural network training from the perspective of
feature learning

* Both theoretically and empirically

* Accurate & insightful perspective



