Passive and Active Multi-Task Representation Learning

Yifang Chen

02-22-2022

Standard Paradigm in Representation Learning

Source tasks (for training representation): ImageNet

Target task:

Few-shot Learning on VOC07 dataset (20 classes, 1-8 examples per class)

- Without representation learning: 5% - 10% (random guess = 5%)
- With representation learning: 50% - 80%

Talk Part I

For a good representation learning,

What are the necessary and sufficient conditions?

What is the practical algorithm?

Big Model Trained on Big Data

Pre-training data is cheap. Use as much as possible. BUT...

Cost of Training Big Models

GPT-3:

- 175 Billion parameters
- 45TB data
- 10,000 GPUs
- Estimated cost ~\$10M

Practical scenario:

- Limited resources: \$, GPU, engineers.
- One or a few target downstream tasks.

Talk Part 2: pre-training data/task selection for representation learning

Motivations:

- Resources needed scale with # of pre-training data used.
- Data/task selection can improve performance [Chen Crammer He Roth Su 2021].

Approach: Active Learning

- Actively select training data instead of using all the data
- Classical active learning: single-task.
- Our work: Task level active learning.

Outline

Supervised Multi-Task Rep Learning

- What leads to good rep and transfer learning ?
- Theory results on classical setting
- Theory results on harder setting
 - High dim rep, overparameterized neural net
 - High task number, low data amount per task

Active Multi-Task Rep Learning

- When can we do better than passive learning ?
- Algorithm and experiment

Outline

Supervised Multi-Task Rep Learning

- What leads to good rep and transfer learning ?
- Theory results on classical setting
- Theory results on harder setting
 - High dim rep, overparameterized neural net
 - High task number, low data amount per task

Active Multi-Task Rep Learning

- When can we do better than passive learning ?
- Algorithm and experiment

Supervised Multi-Task Representation Learning

Formulation

Representation Learning

- *T* source tasks, each with n_1 data: $\left\{ (x_1^t, y_1^t) \dots (x_{n_1}^t, y_{n_1}^t) \right\}_{t=1}^T$ (uniform passive sampling)
- Learning representation:

 $\min_{h} \sum_{t=1}^{T} \min_{g_t} \sum_{i=1}^{n_1} \ell(g_t \circ h(x_i^t), y_i^t)$

Predictor Learning

• 1 target task, with $n_{T+1} \ll n_1$ data: $(x_1^{T+1}, y_1^{T+1}) \dots (x_{n_2}^{T+1}, y_{n_2}^{T+1}) \sim \mu$

• Training for the target task: $\min_{f_{T+1}} \sum_{i=1}^{n_{T+1}} \ell(f_{T+1} \circ h(x_i^{T+1}), y_i^{T+1})$ Representation $h(\cdot)$ is fixed

Formulation

Representation Learning

- *T* source tasks, each with n_1 data: $\left\{ (x_1^t, y_1^t) \dots (x_{n_1}^t, y_{n_1}^t) \right\}_{t=1}^T$ (uniform passive sampling)
- Learning representation:

Predictor Learning

• 1 target task, with $n_{T+1} \ll n_1$ data: $(x_1^{T+1}, y_1^{T+1}) \dots (x_{n_2}^{T+1}, y_{n_2}^{T+1}) \sim \mu$

• Training for the target task: $\min_{w_{T+1}} \sum_{i=1}^{n_{T+1}} \ell(\langle w_{T+1}, h(x_i^{T+1}) \rangle, y_i^{T+1})$ Representation $h(\cdot)$ is fixed

* In this lecture, we stick with the linear predictor w_t . The other choice of f can be, for example, monotonic Lipschitz function for multi-task index model. (See [T. Jordan Jin 2020b] for more examples on general choices of rep and predictor)

Standard Statistical Learning Theory

 $\mathcal{C}(\mathcal{H})$: complexity measure of the representation class \mathcal{H} . E.g., # of variables (linear function class), VC-dimension, Rademacher complexity, Gaussian width, etc

Standard Statistical Learning Theory

In most cases, $\mathcal{C}(\mathcal{H}) \gg k$. E.g. \mathcal{H} is a large neural network except the last layer.

Can we learn \mathcal{H} from other tasks so n_{T+1} only need to scale with k?

h

Existence of a Good Representation

Assumption 1: Existence of a Good Representation

There exist a representation
$$h^* \in \mathcal{H}, h^*(x) \in \mathbb{R}^k$$
 and $w_1^*, w_2^*, ..., w_T^*, w_{T+1}^* \in \mathbb{R}^k$:

$$\mathbb{E}_{(x^t, y^t) \sim \mu_t} [\ell(\langle w_t^*, h^*(x^t) \rangle, y^t)] = 0 \ \forall t = 1, ..., T$$

$$\mathbb{E}_{(x^{T+1}, y^{T+1}) \sim \mu} [\ell(\langle w_{T+1}^*, h^*(x_{T+1}) \rangle, y_{T+1})] = 0$$

A shared good representation for all source tasks and the target task: This is why we use representation learning. (Without this assumption, we should not use representation learning)

Existence of Good Rep is NOT Enough

Input: 1000 dimensional 0/1 vector, $\{0,1\}^{1000}$

Good representation: first 100 dimension

- All tasks (source and target) only need first 100 digits for accurate prediction.
- Predicting whether the 10th-digit is 1, predicting the sum of first 100 digits, etc.

Bad scenario:

- Source tasks only need to use first 50 digits: e.g., whether the 10th-digit is 1
- Target tasks need to use **all** first 100 digits: e.g., predicts the sum of first 100 digits

Source tasks cannot give the **full information** about the good representation!

Assumption 2: Diversity of Source Tasks

Representation learning is useful only if source tasks can give the full information about the good representation, a.k.a., **diversity of the source tasks**.

Diversity for Linear Predictors

Assumption 1: Existence of a Good Representation

There exist a representation
$$h^* \in \mathcal{H}, h^*(x) \in \mathbb{R}^k$$
 and $w_1^*, w_2^*, ..., w_T^*, w_{T+1}^* \in \mathbb{R}^k$:

$$\mathbb{E}_{(x^t, y^t) \sim \mu_t} [\ell(\langle w_t^*, h^*(x^t) \rangle, y^t]] = 0 \ \forall t = 1, ..., T$$

$$\mathbb{E}_{(x^{T+1}, y^{T+1}) \sim \mu} [\ell(\langle w_{T+1}^*, h^*(x_{T+1}) \rangle, y_{T+1})] = 0$$

Assumption 2: Diversity of Source Tasks for Linear Predictor

 $W^* = [w_1^*, w_2^*, \dots, w_T^*] \in \mathbb{R}^{k \times T}$ is full rank (=k).

Need $T \ge k$: cover the span of the good representation.

Also see [Tripuraneni Jordan Jin 2020]

Linear Representation (Subspace Learning)

Input: $x \in \mathbb{R}^d$. Linear representation class \mathcal{H} : matrices of size $k \times d$ ($k \ll d$).

Assumption 1: Existence of a Good Representation

There exists a linear representation
$$B^* \in \mathbb{R}^{k \times d}$$
, and $w_1^*, w_2^*, \dots, w_T^*, w_{T+1}^* \in \mathbb{R}^k$:

$$\mathbb{E}_{(x^t, x^t) \sim \mu_t} [\ell(\langle w_t^*, B^* x^t \rangle, y^t)] = 0 \forall t = 1, \dots, T$$

$$\mathbb{E}_{(x^{T+1}, y^{T+1}) \sim \mu} [\ell(\langle w_{T+1}^*, B^* x_{T+1} \rangle, y_{ta})] = 0$$

Theorem [Du Hu Kakade Lee Lei, 2020]

Under Assmp. 1 &2, we have the target task loss = $O(\frac{dk+Tk}{n_1\sigma_{min}^2(W^*)} + \frac{k}{n_{T+1}})$.

When source tasks are uniformly spread, $\sigma_{min}(W^*) = \Theta(\sqrt{T/k})$.

Without representation learning, directly learning a linear predictor on \mathbb{R}^d : $O(\frac{d}{n_{T+1}})$.

Main Result for General Representation Class

Assumption 1: Existence of a Good Representation

There exist a representation
$$h^* \in \mathcal{H}, h^*(x) \in \mathbb{R}^k$$
 and $w_1^*, w_2^*, ..., w_T^*, w_{T+1}^* \in \mathbb{R}^k$:

$$\mathbb{E}_{(x^t, y^t) \sim \mu_t} [\ell(\langle w_t^*, h^*(x^t) \rangle, y^t]] = 0 \ \forall t = 1, ..., T$$

$$\mathbb{E}_{(x^{T+1}, y^{T+1}) \sim \mu} [\ell(\langle w_{T+1}^*, h^*(x_{T+1}) \rangle, y_{T+1})] = 0$$

Theorem [Du Hu Kakade Lee Lei, 2020]

Under Assmp. 1 &2, we have the target task loss = $O(\frac{\mathcal{C}(\mathcal{H}, \{x_i^t\}_{i,t})^2}{n_1 \sigma_{min}^2(W^*)} + \frac{k}{n_{T+1}}).$

 $C(\mathcal{H}, \{x_i^t\}_{i,t})$: Gaussian width of the representation class \mathcal{H} projected on all the input data.

- Measures how well the function in the class can fit the noise.
- Can use existing theory for neural networks for $\mathcal{C}(\mathcal{H},\cdot)$.

Key Message

Existence of a good representation and **diversity of tasks** are key conditions that enable **representation learning** to improve sample efficiency.

Beyond the standard results

The current results we presented here has two intrinsic assumptions:

1. The exact dimension/complexity of the representation space $\{h(x) | \forall h \in \mathcal{H}\}$ is known to the learner. e.g., $\phi(x) = x^{\top}B$ where $B \in \mathbb{R}^{k \times d}$, k is known to the learner.

Can we achieve good guarantees when the exact low dim of $\phi(x)$ is unknown ?

Example

Test acc after prune neural net: each curve corresponding to different architecture or pruning methods

- Neural net is inherently sparse or has intrinsic low rank
- But usually, we don't have prior knowledge on this low rank. Complicated pruning methods are needed to learn the true underlying low dim subspace.

Assumption 1: high dimension linear representation

There exist a good representation $\phi^*(x) = B^*x$ where $B^* \in \mathbb{R}^{T \times d}$, and $w_1^*, w_2^*, \dots, w_T^*, w_{T+1}^* \in \mathbb{R}^T$. But B^* has intrinsic unknown low intrinsic rank $R = \frac{||\Theta^*||_*}{||\Theta^*||_F}$, where $\Theta^* = (B^*)^T [w_1^*, w_2^*, \dots, w_T^*]$

Add regularization term to ERM

$$\hat{B} = \underset{B}{\operatorname{argmin}} \sum_{t=1}^{T} \underset{w_t}{\min} \sum_{i=1}^{n_1} \ell(\langle Bx_i^t, w_t \rangle, y_i^t) + \lambda ||B|| + \lambda \sum_{\substack{t=1\\t=1}}^{T} ||w_t||$$

$$\widehat{w_{T+1}} = \operatorname{argmin}_{||W|| \le \frac{\sqrt{||\Theta^*||_*}}{T}} \sum_{i=1}^{n_{T+1}} \ell(\langle Bx_i^{T+1}, w \rangle, y_i^{T+1})$$

Assumption 1: high dimension linear representation

There exist a good representation $\phi^*(x) = B^*x$ where $B^* \in \mathbb{R}^{T \times d}$, and $w_1^*, w_2^*, \dots, w_T^*, w_{T+1}^* \in \mathbb{R}^T$. But B^* has intrinsic unknown low intrinsic rank $R = \frac{||\Theta^*||_*}{||\Theta^*||_F}$,

where
$$\Theta^* = (B^*)^{\top} [w_1^*, w_2^*, ..., w_T^*]$$

Theorem [Du Hu Kakade Lee Lei, 2020] (Informal)

Under Assmp. 1, in a common case
$$T = d$$
, $w_{T+1} \sim \mathcal{N}(0, \Theta^*(\Theta^*)^\top/T)$,
we have the target task loss $= O\left(\frac{R||\Theta^*||_F}{\sqrt{T}}\sqrt{\frac{d}{n_1T}} + \frac{R||\Theta^*||_F}{\sqrt{T}}\sqrt{\frac{1}{n_{T+1}}}\right)\right)$,
Without regularization on ERM, last term will scale with T=d : $O\left(\frac{d}{n_{T+1}}\right)$.

Assumption 1: Overparameterized 2-layer neural network

There exist a good representation $\phi^*(x) = \max(B^*x, 0)$ (*relu*) where $B^* \in \mathbb{R}^{d \times d_0}$, and $w_1^*, w_2^*, \dots, w_T^*, w_{T+1}^* \in \mathbb{R}^d$. But B^* has intrinsic unknown low intrinsic rank $R = ||W^*||_F^2 + ||B^*||_F^2$,

Solution: Add regularization term to ERM

$$\hat{B} = \underset{B}{\operatorname{argmin}} \sum_{t=1}^{T} \underset{w_t}{\min} \sum_{i=1}^{n_1} \ell(\langle \max(Bx_i^t, 0), w_t \rangle, y_i^t) + \lambda ||B||_F + \lambda \sum_{t=1}^{T} ||w_t||$$
$$\widehat{w_{T+1}} = \operatorname{argmin}_{w \in some \ regu \ constraints} \sum_{i=1}^{n_{T+1}} \ell(\langle Bx_i^{T+1}, w \rangle, y_i^{T+1})$$

Assumption 1: Overparameterized 2-layer neural network

There exist a good representation $\phi^*(x) = \max(B^*x, 0)$ (*relu*) where $B^* \in \mathbb{R}^{d \times d_0}$, and $w_1^*, w_2^*, \dots, w_T^*, w_{T+1}^* \in \mathbb{R}^d$. But B^* has intrinsic unknown low intrinsic rank $R' = ||W^*||_F^2 + ||B^*||_F^2$,

Theorem [Du Hu Kakade Lee Lei, 2020] (Informal)

Under Assmp. 1, when w_{T+1} is in some benign setting (skip here), we have the target task loss = $O\left(\frac{R'}{\sqrt{T}}\sqrt{\frac{d}{n_1T}} + \frac{R'}{\sqrt{T}}\sqrt{\frac{1}{n_{T+1}}}\right)$,

Beyond the standard results

The current results we presented here has two intrinsic assumptions:

2. The number of task is not huge $T \leq O(d)$ and each task collects a proper amount of data $n_1 \geq \Omega(d)$.

Can we achieve good guarantees when we have huge number of tasks, but each task has very limited data ?

Example

- Suppose there exists *T* diverse tasks each has dlog(T) number of samples and satisfies the diverse requirement.
- Now uniformly divide each task into to *d* subtasks, shuffle all the subtask and present to the leaner. So, the learner saw *dT* subtasks, but not know which are belong to the same task.
- With the exact same data, the test loss for target on learning these sub-tasks should be same as learning directly on T tasks.
- But by using naïve ERM $\min_{h} \sum_{t=1}^{Td} \min_{w_t} \sum_{i=1}^{n_1} \ell(\langle w_t, h(x_i^t) \rangle, y_i^t)$, the learner will have worse guarantees

Main result for a large number source tasks

Assumption 1: Existence of a Good Representation

There exists a linear representation $B^* \in \mathbb{R}^{k \times d}$, and $w_1^*, w_2^*, \dots, w_T^*, w_{T+1}^* \in \mathbb{R}^k$.

Assumption 2: small number of sample per source task

There exist a large number of source tasks $T \ge d$, but each source task is only guaranteed to provide $n_1 \ge \Omega(\log(T))$ amount of data.

Solution: Alternatively minimize \widehat{w}_t and \widehat{B} .

- Random shuffle the task and iteratively training on each task
- In each iteration,
 - first fix the current \widehat{B} and minimize on \widehat{w}_t
 - then fix the current \widehat{w}_t and minimize on \widehat{B}

Main result for a large number source tasks

Assumption 1: Existence of a Good Representation

There exists a linear representation $B^* \in \mathbb{R}^{k \times d}$, and $w_1^*, w_2^*, \dots, w_T^*, w_{T+1}^* \in \mathbb{R}^k$.

Assumption 2: small number of sample per source task

There exist a large number of source tasks $T \ge d$, but each source task is only guaranteed to provide $n_1 \ge \Omega(\log(T))$ amount of data.

Theorem [Thekumparampil Jain Netrapalli Oh, 2020] (Informal)

Under Assmp. 1 and 2, we have the target task loss = $O\left(\frac{dk}{n_1\sigma_{min}^2(W^*)} + \frac{k}{n_{T+1}}\right)$, <u>If directly using ERM, we will have an extra</u> $O\left(\frac{Tk}{n_1\sigma_{min}^2(W^*)}\right)$ term and the guarantees can <u>even be impossible when</u> $n_1 \ge O(d)$

Key Message

Replace bi-level ERM oracle with more advanced methods (e.g., add regularizer, use alternative minimization) gives multi-task rep learning more robustness and adaptivity

Outline

Supervised Multi-Task Rep Learning

- What leads to good rep and transfer learning ?
- Results on benign setting
- Results beyond benign setting
 - High dim rep, overparameterized neural net
 - High task number, low data amount per task

Active Multi-Task Rep Learning

- When can we do better than passive learning ?
- Algorithm and experiment

Limitation for passive learning

Passive learning : Train on all available source tasks. Usually, tasks are uniformly collected from real-world environment.

Limitation:

- There exists a large number of tasks (different domain, different metric)
- Processing data can be expensive
- Not all the rep feature are useful for target task

	Query Image	Surface Normals	Eucl. Distance	Object Class. Top 5 prediction: • sliding door • home theater, home theatre • studio couch, day bed • china cabinet, china closet • entertainment center	Scene Class. Top 2 prediction: • living room • television room	
CV:	Jigsaw puzzle	Colorization	2D Segm.	2.5D Segm.	Semantic Segm.	
	Vanishing Points	2D Edges	3D Edges	2D Keypoints	3D Keypoints	
	3D Curvature	Image Keshading	In-painting	Denoising	Autoencoding	
NLP:	Task natural language inference (NLI) sentiment analysis paraphrase detection NLI extractive QA cloze-style QA		Domain) various Movie Rev social QA o Wikipedia Wikipedia news (CNN	iews questions (Quora) 4, Daily Mail)	Metric accuracy accuracy & F1 accuracy & F1 F1 & EM F1 & EM	

Task Relevance

Active learning goal: select the most relevant source tasks for the target task.

Example

Input: 1000 dimensional 0/1 vector, $\{0,1\}^{1000}$

Good representation: first 100 dimension

Larger than necessary.

Bad scenario:

- Source tasks only need to use first 50 digits: e.g., whether the 10th-digit is 1
- Target tasks need to use all first 100 digits: e.g., predicts the sum of first 100 digits

OK scenario:

- Source tasks only need to use first 50 digits: e.g., whether the 10th-digit is 1
- The target task also only uses the first 50 digits: e.g., predicts the sum of the first 50 digits.

Which scenario you are in ? (hard to know in advance in practice)

Task Relevance Definition

Assumption 1: Existence of a Good Representation

There exist a representation $h^* \in \mathcal{H}, h^*(x) \in \mathbb{R}^k$ and $w_1^*, w_2^*, ..., w_T^*, w_{T+1}^* \in \mathbb{R}^k$: $\mathbb{E}_{(x^t, y^t) \sim \mu_t} [\ell(\langle w_t^*, h^*(x^t) \rangle, y^t)] = 0 \ \forall t = 1, ..., T$ $\mathbb{E}_{(x^{T+1}, y^{T+1}) \sim \mu} [\ell(\langle w_{T+1}^*, h^*(x_{T+1}) \rangle, y_{T+1})] = 0$

Assumption 2: Task Relevance

$$w_{T+1}^* \in \text{Span}(W^*)$$
 where $W^* = [w_1^*, \dots, w_T^*] \in \mathbb{R}^{k \times T}$
Definition: $v^* = \operatorname{argmin}_{v \in \mathbb{R}^T} ||v||_2$
s.t. $w_{T+1}^* = W^* v$

- Minimize norm in order to have a unique v^* .
- Assume $||w_t^*||_2 = 1$ for normalization. Then $\frac{1}{\tau} \le ||v^*||_2^2 \le 1/\sigma_{\min}^2(W^*)$.
- $v^* = [1,0,0,...]$: one source task equals to the target task, others are orthogonal.

Recall Linear Representation (Subspace Learning)

Input: $x \in \mathbb{R}^d$. Linear representation class \mathcal{H} : matrices of size $k \times d$ ($k \ll d$).

Assumption 1: Existence of a Good Representation

There exist a representation
$$h^* \in \mathcal{H}, h^*(x) \in \mathbb{R}^k$$
 and $w_1^*, w_2^*, \dots, w_T^*, w_{T+1}^* \in \mathbb{R}^k$:

$$\mathbb{E}_{(x^t, y^t) \sim \mu_t} [\ell(\langle w_t^*, h^*(x^t) \rangle, y^t]] = 0 \ \forall t = 1, \dots, T$$

$$\mathbb{E}_{(x^{T+1}, y^{T+1}) \sim \mu} [\ell(\langle w_{T+1}^*, h^*(x_{T+1}) \rangle, y_{T+1})] = 0$$

Theorem [Du Hu Kakade Lee Lei, 2020]

Under Assumption 1 &2, when using passive learning,

we have the target task loss =
$$O(\frac{dk ||\boldsymbol{v}^*||_2^2}{n_1} + \frac{k}{n_{T+1}})$$

Algorithm with Known ν^*

Representation Learning

- Total budget: n_1T data.
- Sample $n_t \propto (v_t^*)^2$ from the t-th task: $\{(x_1^t, y_1^t) \dots (x_{n_i}^t, y_{n_i}^t)\}_{t=1}^T$
- Learning representation: $\min_{h} \sum_{t=1}^{T} \min_{w_{t}} \sum_{i=1}^{n_{t}} \ell(\langle w_{t}, h(x_{i}^{t}) \rangle, y_{i}^{t})$ $\ell: \text{quadratic loss}$

Predictor Learning

- 1 target task, with $n_{T+1} \ll n_1$ data: $(x_1^{T+1}, y_1^{T+1}) \dots (x_{n_{T+1}}^{T+1}, y_{n_{T+1}}^{T+1}) \sim \mu$
- Training for the target task: $\min_{w_{T+1}} \sum_{i=1}^{n_{T+1}} \ell(\langle w_{T+1}, h(x_i^{T+1}) \rangle, y_i^{T+1})$ Representation $h(\cdot)$ is fixed

Theoretical Result with Known ν^*

Theorem [C. Du Jamieson, 2022]

If we sample $n_t \propto (v_t^*)^2$ from the t-th task with total budget $n_1 T$, we have the target task loss = $O\left(\frac{dk \, s^* ||v^*||^2}{n_1 T} + \frac{k}{n_{T+1}}\right)$, where $s^* = \min_{\gamma \in [0,1]} (1-\gamma) ||v^*||_{0,\gamma} + \gamma T$ and $||v^*||_{0,\gamma} = |\{|v_t^* \ge \sqrt{\frac{\gamma}{N_1 T}}|\}|$.

 s^* : approximate sparsity. $1 \le s^* \le T$

- Passive uniform sampling: $O(\frac{dk ||\boldsymbol{v}^*||_2^2}{n_1} + \frac{k}{n_{T+1}}).$
- Bound never worse than passive sampling.
 Example: one source task equals target task, but others are orthogonal:
- $s^* = 1, v^* = 1 \implies \frac{1}{r}$ improvement over passive sampling
- Intuition: should just sample from this particular source task!

Algorithm with Unknown ν^*

Main ideas: 1) estimate v^* iteratively, 2) doubling schedule.

- Initialize $\hat{v}_t = 1$ for t= 1,...,T.
- For j =1, 2,...
 - Sample $\mathbf{n_t} \propto (\widehat{\mathbf{v_t}})^2 \, 2^j$ from the t-th task: $\{(x_1^t, y_1^t) \dots (x_{n_1}^t, y_{n_t}^t)\}_{t=1}^T$
 - Learn representation:

$$\widehat{h}, \widehat{W} = \operatorname{argmin}_{h} \sum_{t=1}^{T} \operatorname{argmin}_{w_{t}} \sum_{i=1}^{n_{t}} \ell(\langle w_{t}, h(x_{i}^{t}) \rangle, y_{i}^{t})$$

• Learn the target task:

$$\widehat{w}_{T+1} = \operatorname{argmin}_{w_{T+1}} \sum_{i=1}^{n_{T+1}} \ell(\langle w_{T+1}, \widehat{h}(x_i^{T+1}) \rangle, y_i^{T+1})$$

• Estimate task relevance: $\hat{\nu} = \operatorname{argmin}_{\nu} ||\nu||_2$ s.t. $\widehat{W}\nu = \widehat{w}_{T+1}$

Theoretical Result with Known ν^*

Theorem [C. Du Jamieson, 2022]

With total budget
$$n_1 T$$
, we have
the target task loss = $O\left(\frac{dk \ s^* || \boldsymbol{\nu}^* ||^2}{n_1 T} + \frac{k}{n_{T+1}} + \text{lower order terms}\right)$
where $s^* = \min_{\boldsymbol{\gamma} \in [0,1]} (1 - \boldsymbol{\gamma}) || \boldsymbol{\nu}^* ||_{0,\boldsymbol{\gamma}} + \boldsymbol{\gamma}T$ and $|| \boldsymbol{\nu}^* ||_{0,\boldsymbol{\gamma}} = |\{| \boldsymbol{\nu}_t^2 \ge \frac{\boldsymbol{\gamma}}{N_1 T}|\}|$.

Lower order terms account for estimating v^* .

Experiments

Dataset: MNIST-C(orruption)

• 16 types of corruptions

Multi-task formulation:

- 10 digits x 16 types of corruptions = 160 binary tasks
- Each target task has 150 source tasks (10 digits x 15 other types of corruptions)

Representation function:

- Linear representation
- 2-layer CNN

[Mu & Gilmer 2019]

Experiments with Linear Representation

- Row: corruption. Number: improvement over uniform sampling.
 - Average improvement: 1.1% (baseline error ~8%).
 - Positive improvement on 136/160 tasks.
- Right: histogram summary of incorrect predictions.

Experiments with ConvNet Representation

- Average improvement: 0.68% (baseline error ~6%).
- Positive improvement on 133/160 tasks.

Learned Task Relevance ν^*

- Target task: digit 2 corrupted by glass blur.
- v_t^* is large on tasks for digit 2.

Summary

Active learning is useful for representation learning:

- A formal definition of task relevance.
- Stronger than passive learning in theory and practice.
- Interpretability.

Future Work:

- Leverage active learning techniques for representation learning
- Other definitions of task relevance?
- Continuous source task space with infinite
- Active learning on finetune/ active prompt-based learning/ self-supervised learning

Thank You