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Standard Paradigm in Representation Learning
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ResNet

Source tasks
(for training
representation):
ImageNet

Target task:
Few-shot Learning
on VOC07 dataset
(20 classes, 1-8
examples per class)

• Without representation learning:
5% - 10% (random guess = 5%)

• With representation learning:
50% - 80%



Talk Part I
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What are the necessary and
sufficient conditions?

Q1:

What is the practical algorithm?

Q2:When? How?

University of Washington

For a good representation learning,



Big Model Trained on Big Data
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Q2:
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Pre-training data is cheap. Use as much as possible. 
BUT…



Cost of Training Big Models
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GPT-3:
• 175 Billion parameters
• 45TB data
• 10,000 GPUs
• Estimated cost ~$10M

Q2:

University of Washington

Practical scenario:
• Limited resources: $, GPU, engineers.
• One or a few target downstream tasks.
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Q:

Talk Part 2: pre-training data/task
selection for representation learning

Motivations:
• Resources needed scale with # of pre-training data used.
• Data/task selection can improve performance [Chen Crammer He

Roth Su 2021].

Approach: Active Learning
• Actively select training data instead of using all the data
• Classical active learning: single-task.
• Our work: Task level active learning.



Outline

Supervised Multi-Task Rep Learning
• What leads to good rep and transfer 

learning ?
• Theory results on classical setting
• Theory results on harder setting
• High dim rep, overparameterized neural net
• High task number, low data amount per task

Active Multi-Task Rep Learning
• When can we do better than passive 

learning ?
• Algorithm and experiment
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Supervised Multi-Task Representation Learning
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Q2:

University of Washington

ℎ ∈ ℋ: representation class
(e.g., multi-layer NN)

𝑔!, … 𝑔", 𝑓 ∈ 𝒢: prediction class
(e.g., linear classifier)



Formulation
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• 𝑇 source tasks, each with 𝒏𝟏 data:
𝑥!$, 𝑦!$ … 𝑥%!

$ , 𝑦%!
$

$&!
"

(uniform passive sampling)

• 1 target task, with 𝒏𝑻(𝟏 ≪ 𝒏𝟏 data:
𝑥!"(!, 𝑦!"(! … 𝑥%"

"(!, 𝑦%"
"(! ∼ 𝜇

• Learning representation:

min
)
4
$&!

"

min
*#

4
+&!

%!

ℓ(𝑔$ ∘ ℎ 𝑥+$ , 𝑦+$)

• Training for the target task:

min
,$%!

4
+&!

%$%!

ℓ(𝑓"(! ∘ 𝒉 𝑥+"(! , 𝑦+"(!)

Representation 𝒉(⋅) is fixed
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Representation Learning Predictor Learning



Formulation
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• 𝑇 source tasks, each with 𝒏𝟏 data:
𝑥!$, 𝑦!$ … 𝑥%!

$ , 𝑦%!
$

$&!
"

(uniform passive sampling)

• 1 target task, with 𝒏𝑻(𝟏 ≪ 𝒏𝟏 data:
𝑥!"(!, 𝑦!"(! … 𝑥%"

"(!, 𝑦%"
"(! ∼ 𝜇

• Learning representation:

min
)
4
$&!

"

min
-#

4
+&!

%!

ℓ(⟨𝑤$, ℎ 𝑥+$ ⟩, 𝑦+$)

• Training for the target task:

min
-$%!

4
+&!

%$%!

ℓ(⟨𝑤"(!, ℎ 𝑥+"(! ⟩, 𝑦+"(!)

Representation ℎ(⋅) is fixed
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Representation Learning Predictor Learning

* In this lecture, we stick with the linear predictor 𝑤!. The other choice of 𝑓 can be, for example, monotonic Lipschitz 
function for multi-task index model.  (See [T. Jordan Jin 2020b] for more examples on general choices of rep and predictor)



Standard Statistical Learning Theory
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Training with data only from the target domain:

min)∈ℋ,-$%!∈ℝ& 4
+&!

%$%!

ℓ(⟨𝑤"(!, ℎ 𝑥+"(! ⟩, 𝑦+"(!)

𝒞 ℋ : complexity measure of the representation class 
ℋ. E.g., # of variables (linear function class), VC-
dimension, Rademacher complexity, Gaussian width,
etc

ℎ

Theorem（Example）

Target task loss = 𝑂(𝒞 ℋ (5
%$%!

)



Standard Statistical Learning Theory
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ℎ

Theorem（Example）

Target task loss = 𝑂(𝒞 ℋ (5
%$%!

)

In most cases, 𝒞 ℋ ≫ 𝑘. E.g. ℋ is a large neural 
network except the last layer.

Q:
Can we learn 𝓗 from other 
tasks so 𝒏𝑻"𝟏 only need to 
scale with 𝒌 ?



Existence of a Good Representation
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A shared good representation for all source tasks and the target task:
This is why we use representation learning.

(Without this assumption, we should not use representation learning)

Assumption 1: Existence of a Good Representation
There exist a representation 𝒉∗ ∈ ℋ, ℎ∗ 𝑥 ∈ ℝ5 and 𝑤!∗, 𝑤7∗, … , 𝑤"∗ , 𝑤"(!∗ ∈ ℝ5:

𝔼 8#,9# ∼;# ℓ ⟨𝑤$
∗, 𝒉∗ 𝑥$ ⟩, 𝑦$ = 0 ∀𝑡 = 1,… , 𝑇

𝔼 8$%!,9$%! ∼; ℓ ⟨𝑤"(!
∗ , 𝒉∗ 𝑥"(! ⟩, 𝑦"(! = 0



Existence of Good Rep is NOT Enough
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Input: 1000 dimensional 0/1 vector, 0,1 !<<<

Bad scenario:
• Source tasks only need to use first 50 digits: e.g., whether the 10th-digit is 1
• Target tasks need to use all first 100 digits: e.g., predicts the sum of first 100 digits

Good representation: first 100 dimension
• All tasks (source and target) only need first 100 digits for accurate prediction.
• Predicting whether the 10th-digit is 1, predicting the sum of first 100 digits, etc.

Source tasks cannot give the full information about the good representation!

“Worst-case” target task



Assumption 2: Diversity of Source Tasks
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Representation learning is useful only if source tasks can give the full information
about the good representation, a.k.a., diversity of the source tasks.

Q: What is the definition of diversity?



Diversity for Linear Predictors
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Assumption 2: Diversity of Source Tasks for Linear Predictor
𝑊∗ = 𝑤!∗, 𝑤7∗, … , 𝑤"∗ ∈ ℝ5×" is full rank (=k).

Need 𝑇 ≥ 𝑘: cover the span of the good representation.

Assumption 1: Existence of a Good Representation
There exist a representation ℎ∗ ∈ ℋ, ℎ∗ 𝑥 ∈ ℝ5 and 𝑤!∗, 𝑤7∗, … , 𝑤"∗ , 𝑤"(!∗ ∈ ℝ5:

𝔼 8#,9# ∼;# ℓ ⟨𝑤$
∗, ℎ∗ 𝑥$ ⟩, 𝑦$ = 0 ∀𝑡 = 1,… , 𝑇

𝔼 8$%!,9$%! ∼; ℓ ⟨𝑤"(!
∗ , ℎ∗ 𝑥"(! ⟩, 𝑦"(! = 0

Also see [Tripuraneni Jordan Jin 2020]



Linear Representation (Subspace Learning)
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Input: 𝑥 ∈ ℝ>. Linear representation class ℋ: matrices of size 𝑘 × 𝑑 (𝑘 ≪ 𝑑).

Assumption 1: Existence of a Good Representation
There exists a linear representation 𝐵∗ ∈ ℝ5×>, and 𝑤!∗, 𝑤7∗, … , 𝑤"∗ , 𝑤"(!∗ ∈ ℝ5:

𝔼 8#,8# ∼;# ℓ ⟨𝑤$
∗, 𝐵∗𝑥$⟩, 𝑦$ = 0 ∀𝑡 = 1,… , 𝑇

𝔼 8$%!,9$%! ∼; ℓ ⟨𝑤"(!
∗ , 𝐵∗𝑥"(!⟩, 𝑦$? = 0

Theorem [Du Hu Kakade Lee Lei, 2020]

Under Assmp. 1 &2, we have the target task loss = 𝑂( >5("5
%!@'()

" (B∗)
+ 5
%$%!

).

When source tasks are uniformly spread, 𝝈𝒎𝒊𝒏 𝑾∗ = 𝚯( 𝐓/𝒌) .
Without representation learning, directly learning a linear predictor on ℝ>: 𝑂( >

%$%!
).



Main Result for General Representation Class
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𝒞 ℋ, 𝑥!" !," : Gaussian width of the representation class ℋ projected on all the input data.
• Measures how well the function in the class can fit the noise.
• Can use existing theory for neural networks for 𝒞 ℋ,⋅ .

Theorem [Du Hu Kakade Lee Lei, 2020]

Under Assmp. 1 &2, we have the target task loss = 𝑂(
𝒞 ℋ, 8(

#
(,#

"

𝒏𝟏𝝈𝒎𝒊𝒏
𝟐 (𝑾∗)

+ 5
%$%!

).

Assumption 1: Existence of a Good Representation
There exist a representation ℎ∗ ∈ ℋ, ℎ∗ 𝑥 ∈ ℝ5 and 𝑤!∗, 𝑤7∗, … , 𝑤"∗ , 𝑤"(!∗ ∈ ℝ5:

𝔼 8#,9# ∼;# ℓ ⟨𝑤$
∗, ℎ∗ 𝑥$ ⟩, 𝑦$ = 0 ∀𝑡 = 1,… , 𝑇

𝔼 8$%!,9$%! ∼; ℓ ⟨𝑤"(!
∗ , ℎ∗ 𝑥"(! ⟩, 𝑦"(! = 0



Key Message

University of Washington 20

Existence of a good representation and diversity of tasks
are key conditions that enable representation learning to

improve sample efficiency.



Beyond the standard results
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The current results we presented here has two intrinsic assumptions:

1.    The exact dimension/complexity of the representation space 
{ℎ 𝑥 | ∀ ℎ ∈ ℋ} is known to the learner. e.g., 𝜙 𝑥 = 𝑥I𝐵 where 
𝐵 ∈ ℝ5×>, k is known to the learner.

Can we achieve good guarantees 
when the exact low dim of 𝝓 𝒙 is 
unknown ?

Q:



Example
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• Neural net is inherently sparse or has intrinsic low rank

• But usually, we don’t have prior knowledge on this low 
rank. Complicated pruning methods are needed to 
learn the true underlying low dim subspace.

Test acc after prune neural net: each curve corresponding 
to different architecture or pruning methods



Main result for implicit low dim representation 
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Assumption 1: high dimension linear representation
There exist a good representation 𝜙∗ 𝑥 = 𝐵∗𝑥 where B∗ ∈ ℝ"×>, and

𝑤!∗, 𝑤7∗, … , 𝑤"∗ , 𝑤"(!∗ ∈ ℝ".
But 𝐵∗ has intrinsic unknown low intrinsic rank  𝑅 = ||K∗||∗

||K∗||1
, 

where   Θ∗ = 𝐵∗ I[𝑤!∗, 𝑤7∗, … , 𝑤"∗]

Add regularization term to ERM

𝐵̂ = argmin
L

4
$&!

"

min
-#

4
+&!

%!

ℓ(⟨𝐵𝑥+$, 𝑤$⟩, 𝑦+$) + 𝜆||𝐵|| + 𝜆4
$&!

"

||𝑤$||

c𝑤"(! = argmin
||M||N ||3∗||∗

4

∑+&!
%$%! ℓ(⟨𝐵𝑥+"(!, 𝑤⟩, 𝑦+"(!)



Main result for implicit low dim representation 
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Theorem [Du Hu Kakade Lee Lei, 2020] (Informal)
Under Assmp. 1, in a common case T = d,𝑤"(! ∼ 𝒩(0, Θ∗ Θ∗ I/𝑇) , 

we have the target task loss = 𝑂 O||K∗||1
"

>
%!"

+ O||K∗||1
"

!
%$%!

) ,

Without regularization on ERM, last term will scale with T=d ∶ 𝑂 >
%$%!

.

Assumption 1: high dimension linear representation
There exist a good representation 𝜙∗ 𝑥 = 𝐵∗𝑥 where B∗ ∈ ℝ"×>, and

𝑤!∗, 𝑤7∗, … , 𝑤"∗ , 𝑤"(!∗ ∈ ℝ".
But 𝐵∗ has intrinsic unknown low intrinsic rank  𝑅 = ||K∗||∗

||K∗||1
, 

where   Θ∗ = 𝐵∗ I[𝑤!∗, 𝑤7∗, … , 𝑤"∗]



Main result for implicit low dim representation 
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Assumption 1: Overparameterized 2-layer neural network
There exist a good representation 𝜙∗ 𝑥 = max(𝐵∗𝑥, 0) (𝑟𝑒𝑙𝑢) where B∗ ∈ ℝ>×>5 , and

𝑤!∗, 𝑤7∗, … , 𝑤"∗ , 𝑤"(!∗ ∈ ℝ>.
But 𝐵∗ has intrinsic unknown low intrinsic rank  𝑅 = ||𝑊∗||P7 + ||𝐵∗||P7 , 

Solution: Add regularization term to ERM

𝐵̂ = argmin
L

4
$&!

"

min
-#

4
+&!

%!

ℓ(⟨max(𝐵𝑥+$, 0), 𝑤$⟩, 𝑦+$) + 𝜆||𝐵||P + 𝜆4
$&!

"

||𝑤$||

c𝑤"(! = argminM∈QRST UT*V WXYZ[\]^Y[Z ∑+&!
%$%! ℓ(⟨𝐵𝑥+"(!, 𝑤⟩, 𝑦+"(!)



Main result for implicit low dim representation 

University of Washington 26

Assumption 1: Overparameterized 2-layer neural network
There exist a good representation 𝜙∗ 𝑥 = max(𝐵∗𝑥, 0) (𝑟𝑒𝑙𝑢) where B∗ ∈ ℝ>×>5 , and

𝑤!∗, 𝑤7∗, … , 𝑤"∗ , 𝑤"(!∗ ∈ ℝ>.
But 𝐵∗ has intrinsic unknown low intrinsic rank  𝑅′ = ||𝑊∗||P7 + ||𝐵∗||P7 , 

. 

Theorem [Du Hu Kakade Lee Lei, 2020] (Informal)
Under Assmp. 1, when 𝑤"(! is in some benign setting (skip here), we have the target

task loss = 𝑂 O6

"
>
%!"

+ O6

"
!

%$%!
) ,



Beyond the standard results
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The current results we presented here has two intrinsic assumptions:

2. The number of task is not huge 𝑇 ≤ 𝑂(𝑑) and each task collects a 
proper amount of data 𝑛! ≥ Ω(𝑑).

Can we achieve good guarantees 
when we have huge number of 
tasks, but each task has very 
limited data ?

Q:



Example
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• Suppose there exists 𝑇 diverse tasks each has 𝑑𝑙𝑜𝑔(𝑇) number 
of samples and satisfies the diverse requirement.

• Now uniformly divide each task into to 𝑑 subtasks, shuffle all the 
subtask and present to the leaner. So, the learner saw 𝑑𝑇 sub-
tasks, but not know which are belong to the same task.

• With the exact same data, the test loss for target on learning 
these sub-tasks should be same as learning directly on 𝑇 tasks.

• But by using naïve ERM min
)
∑$&!"> min

-#
∑+&!
%! ℓ(⟨𝑤$, ℎ 𝑥+$ ⟩, 𝑦+$) , 

the learner will have worse guarantees



Main result for a large number source tasks
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Assumption 2: small number of sample per source task
There exist a large number of source tasks T ≥ 𝑑, but each source task is only 

guaranteed to provide  𝑛! ≥ Ω(log(𝑇)) amount of data.

Solution: Alternatively minimize u𝑤$ and 𝐵̂. 
• Random shuffle the task and iteratively training on each task
• In each iteration, 
• first fix the current 𝐵̂ and minimize on u𝑤$
• then fix the current u𝑤$ and minimize on 𝐵̂

Assumption 1: Existence of a Good Representation
There exists a linear representation 𝐵∗ ∈ ℝ5×>, and 𝑤!∗, 𝑤7∗, … , 𝑤"∗ , 𝑤"(!∗ ∈ ℝ5.



Main result for a large number source tasks
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Assumption 2: small number of sample per source task
There exist a large number of source tasks T ≥ 𝑑, but each source task is only 

guaranteed to provide  𝑛! ≥ Ω(log(𝑇)) amount of data.

Assumption 1: Existence of a Good Representation
There exists a linear representation 𝐵∗ ∈ ℝ5×>, and 𝑤!∗, 𝑤7∗, … , 𝑤"∗ , 𝑤"(!∗ ∈ ℝ5.

Theorem [Thekumparampil Jain Netrapalli Oh, 2020] (Informal)

Under Assmp. 1 and 2, we have the target task loss = 𝑂 >5
%!@'()

" (B∗)+
5

%$%!
,

If directly using ERM, we will have an extra 𝑂 "5
%!@'()

" (B∗)
term and the guarantees can 

even be impossible when 𝑛! ≥ O(𝑑)



Key Message
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Replace bi-level ERM oracle with more advanced 
methods (e.g., add regularizer, use alternative 

minimization ) gives multi-task rep learning more 
robustness and adaptivity



Outline

Supervised Multi-Task Rep Learning
• What leads to good rep and transfer 

learning ?
• Results on benign setting
• Results beyond benign setting
• High dim rep, overparameterized neural net
• High task number, low data amount per task

Active Multi-Task Rep Learning
• When can we do better than passive 

learning ?
• Algorithm and experiment
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Limitation for passive learning
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Passive learning : Train on all available source tasks. Usually, tasks are uniformly 
collected from real-world environment.

Limitation: 
• There exists a large number of tasks 

(different domain, different metric)

• Processing data can be expensive

• Not all the rep feature are useful for target 
task

CV:

NLP:



Task Relevance
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Active learning goal: select the most relevant
source tasks for the target task.

Q: How to characterize the relevance?



Example
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Input: 1000 dimensional 0/1 vector, 0,1 !<<<

Good representation: first 100 dimension

OK scenario:
• Source tasks only need to use first 50 digits: e.g., whether the 10th-digit is 1
• The target task also only uses the first 50 digits: e.g., predicts the sum of the first

50 digits.

Bad scenario:
• Source tasks only need to use first 50 digits: e.g., whether the 10th-digit is 1
• Target tasks need to use all first 100 digits: e.g., predicts the sum of first 100 digits

Larger than necessary.

Which scenario you are in ? (hard to know in advance in practice)



Task Relevance Definition
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Assumption 2: Task Relevance
𝑤"(!∗ ∈ Span (𝑊∗) where 𝑊∗ = 𝑤!∗, … , 𝑤"∗ ∈ ℝ5 × "

Definition: 𝝂∗ = 𝐚𝐫𝐠𝐦𝐢𝐧𝝂∈ℝ𝑻 || 𝝂||𝟐
s.t. 𝒘𝑻(𝟏

∗ = 𝑾∗𝝂

• Minimize norm in order to have a unique 𝜈∗.
• Assume ||𝑤$∗||7 = 1 for normalization. Then !

"
≤ ||𝜈∗||77 ≤ 1/𝜎a^Y7 (𝑊∗).

• 𝜈∗ = [1,0,0, … ]: one source task equals to the target task, others are orthogonal.

Assumption 1: Existence of a Good Representation
There exist a representation ℎ∗ ∈ ℋ, ℎ∗ 𝑥 ∈ ℝ5 and 𝑤!∗, 𝑤7∗, … , 𝑤"∗ , 𝑤"(!∗ ∈ ℝ5:

𝔼 8#,9# ∼;# ℓ ⟨𝑤$
∗, ℎ∗ 𝑥$ ⟩, 𝑦$ = 0 ∀𝑡 = 1,… , 𝑇

𝔼 8$%!,9$%! ∼; ℓ ⟨𝑤"(!
∗ , ℎ∗ 𝑥"(! ⟩, 𝑦"(! = 0



Recall Linear Representation (Subspace Learning)
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Input: 𝑥 ∈ ℝ>. Linear representation class ℋ: matrices of size 𝑘 × 𝑑 (𝑘 ≪ 𝑑).

Theorem [Du Hu Kakade Lee Lei, 2020]
Under Assumption 1 &2, when using passive learning,

we have the target task loss = 𝑂(>5 ||𝝂
∗||𝟐

𝟐

𝒏𝟏
+ 5
%$%!

).

Assumption 1: Existence of a Good Representation
There exist a representation ℎ∗ ∈ ℋ, ℎ∗ 𝑥 ∈ ℝ5 and 𝑤!∗, 𝑤7∗, … , 𝑤"∗ , 𝑤"(!∗ ∈ ℝ5:

𝔼 8#,9# ∼;# ℓ ⟨𝑤$
∗, ℎ∗ 𝑥$ ⟩, 𝑦$ = 0 ∀𝑡 = 1,… , 𝑇

𝔼 8$%!,9$%! ∼; ℓ ⟨𝑤"(!
∗ , ℎ∗ 𝑥"(! ⟩, 𝑦"(! = 0



Algorithm with Known 𝝂∗
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• Total budget: 𝑛!𝑇 data.
• 1 target task, with 𝑛"(! ≪ 𝑛! data:

𝑥!"(!, 𝑦!"(! … 𝑥%$%!
"(! , 𝑦%$%!

"(! ∼ 𝜇

• Learning representation:

min)4
$&!

"

min
𝒘𝒕

4
+&!

𝒏𝒕

ℓ(⟨𝑤$, ℎ 𝑥+$ ⟩, 𝑦+$)

ℓ: quadratic loss

• Training for the target task:

min-$%! 4
+&!

%$%!

ℓ(⟨𝑤"(!, ℎ 𝑥+"(! ⟩, 𝑦+"(!)

Representation 𝒉(⋅) is fixed

University of Washington

Representation Learning Predictor Learning

• Sample 𝒏𝒕 ∝ (𝝂𝒕∗)𝟐 from the t-th
task: 𝑥!$, 𝑦!$ … 𝑥%(

$ , 𝑦%(
$

$&!
"



Theoretical Result with Known 𝝂∗
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Theorem [C. Du Jamieson, 2022]

If we sample 𝒏𝒕 ∝ (𝝂𝒕∗)𝟐 from the t-th task with total budget 𝑛+𝑇, we have

the target task loss = 𝑂 ,- 𝒔∗||𝝂∗||𝟐

𝒏𝟏𝑻
+ -

3$%&
,

where 𝑠∗ = min
4∈[7,+]

1 − 𝛾 ||𝜈∗||7,4 + 𝛾𝑇 and ||𝜈∗||7,4 = |{|𝑣9∗ ≥
4
:&;

|}|.

𝑠∗: approximate sparsity. 1 ≤ 𝑠∗ ≤ 𝑇

• Passive uniform sampling: 𝑂(>5 ||𝝂
∗||𝟐

𝟐

𝒏𝟏
+ 5
%$%!

).
• Bound never worse than passive sampling.
Example: one source task equals target task, but others are orthogonal:
• 𝑠∗ = 1, 𝜈∗ = 1 ⇒ !

"
improvement over passive sampling

• Intuition: should just sample from this particular source task!



Algorithm with Unknown 𝝂∗
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• Initialize 𝜈̂$ = 1 for t= 1,…,T.
• For j =1, 2,…

• Sample 𝒏𝒕 ∝ ( u𝝂𝒕)𝟐 𝟐𝒋 from the t-th task: 𝑥!$, 𝑦!$ … 𝑥%!
$ , 𝑦𝒏𝒕

$
$&!
"

• Learn representation:

ℎ̂, �𝑊 = argmin)4
$&!

"

argmin
𝒘𝒕

4
+&!

𝒏𝒕

ℓ(⟨𝑤$, ℎ 𝑥+$ ⟩, 𝑦+$)

• Learn the target task:

u𝑤"(! = argmin-$%! 4
+&!

%$%!

ℓ(⟨𝑤"(!, ℎ̂ 𝑥+"(! ⟩, 𝑦+"(!)

• Estimate task relevance: 𝜈̂ = argmine || 𝜈||7 s.t. �𝑊𝜈 = u𝑤"(!

Main ideas: 1) estimate 𝑣∗ iteratively, 2) doubling schedule.



Theoretical Result with Known 𝝂∗
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Lower order terms account for estimating 𝜈∗.

Theorem [C. Du Jamieson, 2022]

With total budget 𝑛+𝑇, we have

the target task loss = 𝑂 ,- 𝒔∗||𝝂∗||𝟐

𝒏𝟏𝑻
+ -

3$%&
+ lower order terms

where 𝑠∗ = min
4∈[7,+]

1 − 𝛾 ||𝜈∗||7,4 + 𝛾𝑇 and ||𝜈∗||7,4 = |{|𝑣9< ≥
4
:&;

|}|.



Experiments
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Dataset: MNIST-C(orruption)
• 16 types of corruptions

Multi-task formulation:
• 10 digits x 16 types of corruptions = 160

binary tasks
• Each target task has 150 source tasks (10

digits x 15 other types of corruptions)

Representation function:
• Linear representation
• 2-layer CNN [Mu & Gilmer 2019]



Experiments with Linear Representation
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• Row: corruption. Number: improvement over uniform sampling.
• Average improvement: 1.1% (baseline error ~8%).
• Positive improvement on 136/160 tasks.

• Right: histogram summary of incorrect predictions.



Experiments with ConvNet Representation
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• Average improvement: 0.68% (baseline error ~6%).
• Positive improvement on 133/160 tasks.



Learned Task Relevance 𝝂∗
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• Target task: digit 2 corrupted by glass blur.
• 𝜈9∗ is large on tasks for digit 2.

Linear ConvNet



Summary
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Active learning is useful for representation learning:
• A formal definition of task relevance.
• Stronger than passive learning in theory and practice.
• Interpretability.

Future Work:
• Leverage active learning techniques for representation learning
• Other definitions of task relevance?
• Continuous source task space with infinite 
• Active learning on finetune/ active prompt-based learning/ self-supervised learning 

University of Washington
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