Energy-Based Models

Energy-based Models

- Goal of generative models:
 - a probability distribution of data: P(x)
- Requirements
 - $P(x) \ge 0$ (non-negative) • $\int_{x} P(x)dx = 1$
- Energy-based model:
 - Energy function: $E(x; \theta)$, parameterized by θ

•
$$P(x) = \frac{1}{z} \exp(-E(x;\theta))$$
 (why exp?)
• $z = \int_{z} \exp(-E(x;\theta)) dx$

Boltzmann Machine

• Generative model

•
$$E(y) = \frac{1}{2}y^{\top}Wy$$

• $P(y) = \frac{1}{z}\exp(-\frac{E(y)}{T})$, T: temperature hyper-parameter

- W: parameter to learn
- When y_i is binary, patterns are affecting each other through W

$$z_i = \frac{1}{T} \sum_j w_{ji} s_j$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

Boltzmann Machine: Training

- Objective: maximum likelihood learning (assume T =1):
 - Probability of one sample:

$$P(y) = \frac{\exp(\frac{1}{2}y^{\top}Wy)}{\sum_{y'}\exp(y'^{\top}Wy')}$$

• Maximum log-likelihood:

$$L(W) = \frac{1}{N} \sum_{y \in D} \frac{1}{2} y^{\mathsf{T}} W y - \log \sum_{y'} \exp(\frac{1}{2} y'^{\mathsf{T}} W y')$$

- A structured Boltzmann Machine
 - Hidden neurons are only connected to visible neurons
 - No intra-layer connections
 - Invented by Paul Smolensky in '89
 - Became more practical after Hinton invested fast learning algorithms in mid 2000

- Computation Rules
 - Iterative sampling

• Hidden neurons
$$h_i: z_i = \sum_j w_{ij} v_j$$
, $P(h_i | v) = \frac{1}{1 + \exp(-z_i)}$
• Visible neurons $v_j: z_j = \sum_i w_{ij} h_i$, $P(v_j | h) = \frac{1}{1 + \exp(-z_j)}$

- Sampling:
 - Randomly initialize visible neurons v₀
 - Iterative sampling between hidden neurons and visible neurons
 - Get final sample (v_{∞}, h_{∞})
- Training:
 - MLE
 - Sampling to approximate gradient

• Maximum likelihood estimated:

•
$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{v \in P} v_{0i} h_{0j} - \frac{1}{M} \sum_{v \in N} v_{\infty i} h_{\infty j}$$

- No need to lift up the entire energy landscape!
 - Raising the neighborhood of desired patterns is sufficient

Deep Bolzmann Machine

- Can we have a **deep** version of RBM?
 - Deep Belief Net ('06)
 - Deep Boltzmann Machine ('09)
- Sampling?
 - Forward pass: bottom-up
 - Backward pass: top-down
- Deep Bolzmann Machine
 - The very first deep generative model
 - Salakhudinov & Hinton

Deep Bolzmann Machine

Deep Boltzmann Machine

Gaussian visible units (raw pixel data)

Training Samples									
and the second	A	B	JAT.		营				
\$	No.	X	1	E C	B				
		(m)		*	1				
Ŕ	E.	6	-ange	St.	- Mail				
A	0	X	1	E.	(B)				
السفل	ALL STREET	Ť	A.		54 a				

Generated Samples

×	2	80C	U	258	K
南	Z	\$	营	净	1
U	1	3	8	2	t
X	to	٤	N.	10	1
Ģ	1	あい	1	a	父
Ser.	5	乱	X	X	於

Summary

- Pros: powerful and flexible
 - An arbitrarily complex density function $p(x) = \frac{1}{z} \exp(-E(x))$
- Cons: hard to sample / train
 - Hard to sample:
 - MCMC sampling
 - Partition function
 - No closed-form calculation for likelihood
 - Cannot optimize MLE loss exactly
 - MCMC sampling

Normalizing Flows

Intuition about easy to sample

- Goal: design p(x) such that
 - Easy to sample
 - Tractable likelihood (density function)
- Easy to sample
 - Assume a continuous variable z
 - e.g., Gaussian $z \sim N(0,1)$, or uniform $z \sim \text{Unif}[0,1]$
 - x = f(z), x is also easy to sample

Intuition about tractable density

- Goal: design $f(z; \theta)$ such that
 - Assume *z* is from an "easy" distribution
 - $p(x) = p(f(z; \theta))$ has tractable likelihood
- Uniform: $z \sim \text{Unif}[0,1]$
 - Density p(z) = 1
 - x = 2z + 1, then p(x) = ?

Intuition about tractable density

- Goal: design $f(z; \theta)$ such that
 - Assume *z* is from an "easy" distribution
 - $p(x) = p(f(z; \theta))$ has tractable likelihood
- Uniform: $z \sim \text{Unif}[0,1]$
 - Density p(z) = 1

•
$$x = 2z + 1$$
, then $p(x) = 1/2$

• x = az + b, then p(x) = 1/|a| (for $a \neq 0$)

•
$$x = f(z), p(x) = p(z) \left| \frac{dz}{dx} \right| = |f'(z)|^{-1} p(z)$$

• Assume f(z) is a bijection

Change of variable

• Suppose x = f(z) for some general non-linear $f(\cdot)$

• The linearized change in volume is determined by the Jacobian of $f(\cdot)$:

$$\frac{\partial f(z)}{\partial z} = \begin{vmatrix} \frac{\partial f_1(z)}{\partial z_1} & \cdots & \frac{\partial f_1(z)}{\partial z_d} \\ \cdots & \cdots & \cdots \\ \frac{\partial f_d(z)}{\partial z_1} & \cdots & \frac{\partial f_d(z)}{\partial z_d} \end{vmatrix}$$

Given a bijection $f(z) : \mathbb{R}^d \to \mathbb{R}^d$
• $z = f^{-1}(x)$
• $p(x) = p(f^{-1}(x)) \left| \det\left(\frac{\partial f^{-1}(x)}{\partial x}\right) \right| = p(z) \left| \det\left(\frac{\partial f^{-1}(x)}{\partial x}\right) \right|$
• Since $\frac{\partial f^{-1}}{\partial x} = \left(\frac{\partial f}{\partial x}\right)^{-1}$ (Jacobian of invertible function)
• $p(x) = p(z) \left| \det\left(\frac{\partial f^{-1}(x)}{\partial x}\right) \right| = p(z) \left| \det\left(\frac{\partial f(z)}{\partial z}\right) \right|^{-1}$

Normalizing Flow

- Idea
 - Sample z_0 from an "easy" distribution, e.g., standard Gaussian
 - Apply *K* bijections $z_i = f_i(z_{i-1})$
 - The final sample $x = f_K(z_K)$ has tractable desnity
- Normalizing Flow
 - $z_0 \sim N(0,I), z_i = f_i(z_{i-1}), x = Z_K$ where $x, z_i \in \mathbb{R}^d$ and f_i is invertible
 - Every revertible function produces a normalized density function

Normalizing Flow

- Generation is trivial
 - Sample z_0 then apply the transformations
- Log-likelihood

•
$$\log p(x) = \log p(Z_{k-1}) - \log \left| \det \left(\frac{\partial f_K}{\partial z_{K-1}} \right) \right|$$

• $\log p(x) = \log p(z_0) - \sum_i \log \left| \det \left(\frac{\partial f_i}{\partial z_{i-1}} \right) \right|$ **O** (d^3) !!!!

Normalizing Flow

- Naive flow model requires extremely expensive computation
 - Computing determinant of $d \times d$ matrices
- Idea:
 - Design a good bijection $f_i(z)$ such that the determinant is easy to compute

Plannar Flow

- Technical tool: Matrix Determinant Lemma:
 - $\det(A + uv^{\top}) + (1 + v^{\top}A^{-1}u) \det A$
- Model:
 - $f_{\theta}(z) + z + u \odot h(w^{\top}z + b)$
 - $h(\cdot)$ chosen to be $tanh(\cdot)(0 < h'(\cdot) < 1)$

•
$$\theta = [u, w, b], \det\left(\frac{\partial f}{\partial z}\right) = \det(I + h'(w^{\mathsf{T}}z + b)uw^{\mathsf{T}}) = 1 + h'(w^{\mathsf{T}}z + b)u^{\mathsf{T}}w$$

- Computation in O(d) time
- Remarks:
 - $u^{\top}w > -1$ to ensure invertibility
 - Require normalization on u and w

Planar Flow (Rezende & Mohamed, '16)

- $f_{\theta}(z) = z + uh\left(w^{\mathsf{T}}z + b\right)$
- 10 planar transformations can transform simple distributions into a more complex one

Extensions

- Other flow models uses triangular Jacobian (NICE, Dinh et al. '14)
- Invertible 1x1 convolutions (Kingma et al. '18)
- Auto-regressive flow:
 - WaveNet (Deepmind '16)
 - PixelCNN (Deepmind '16)

Summary

- Pros:
 - Easy to sample by transforming from a simple distribution
 - Easy to evaluate the probability
 - Easy training (MLE)
- Con
 - Most restricted neural network structure
 - Trade expressiveness for tractability

Score-Based Models and Diffusion Models

Recap: Boltzmann Machine Training

- Objective: maximum likelihood learning (assume T =1):
 - Probability of one sample:

$$P(y) = \frac{\exp(\frac{1}{2}y^{\top}Wy)}{\sum_{y'}\exp(y'^{\top}Wy')}$$

• Maximum log-likelihood:

$$L(W) = \frac{1}{N} \sum_{y \in D} \frac{1}{2} y^{\mathsf{T}} W y - \log \sum_{y'} \exp(\frac{1}{2} y'^{\mathsf{T}} W y')$$

Can we avoid calculating the gradient of normalizing constant ($\nabla_x Z_{\theta}$)?

Score Matching

- Score Function
 - Definition:

$$\nabla_x \log p_{data}(x) : \mathbb{R}^d \to \mathbb{R}^d$$

• Idea: directly fitting the score function:

•
$$\min_{\theta} \mathbb{E}_{p_{data}} \| \nabla_x \log p_{\theta}(x) - \nabla_x \log p_{data}(x) \|^2$$

- No need to compute $\nabla_x Z_{\theta}$!
- Problem:
 - How to compute $\nabla_x \log p_{data}(x)$?

Score function (the vector field) and density function (contours) of a mixture of two Gaussians.

Score Matching

Score Matching

Sliced Score Matching

$$L(\theta) = \frac{1}{N} \sum_{x \in D} \|s_{\theta}(x)\|^2 - 2 \left[Tr(Ds_{\theta}(x)) \right]$$

Score Matching: Langevin Dynamics

$$x_{t+1} \leftarrow x_t + \epsilon \nabla_x \log p(x) + \sqrt{2\epsilon} z_t, z_t \sim N(0,I)$$

Stationary (equilibrium distribution): p(x)

Practical Issues

• Score function estimation is inaccurate in low density regions (few data available).

• Sampling is Slow

Annealing: Denoising Score Matching

- Fit several "smoothed" versions of p_{data} :
 - Choose temperatures: $\sigma_1, \sigma_2, \ldots, \sigma_T$
 - $p_{\sigma_i,data}(x) = p_{data}(x) * N(0,\sigma_i) = \int_{\delta} p_{data}(x-\delta)N(x;\delta,\sigma_i)d\delta$
 - Implementation:
 - Take a sample x, draw a sample $z \sim N(0,\sigma_i)$, output x' = x + z.

$$\sigma_1 > \sigma_2 > \cdots > \sigma_{L-1} > \sigma_L$$

Figure by Stefano Ermon.

Annealing: Denoising Score Matching

 $\arg\min_{\theta} \sum \lambda(\sigma_i) \mathbb{E}_{x \sim p_{\sigma_i, data}} \| s_{\theta}(x, i) - \nabla_x \log p_{\sigma_i, data}(x) \|^2$

Figure by Stefano Ermon.

Annealed Langevin Dynamics

Algorithm 1 Annealed Langevin dynamics.

Figure from Song-Ermon '19

Diffusion Models

An image generated by Stable Diffusion based on the text prompt "a photograph of an astronaut riding a horse"

Perturbing Data with an SDE

• Let the number of noise scales approaches infinity!

Perturbing data to noise with a continuous-time stochastic process.

Stochastic Differential Equations

$$dx = f(x, t)dt + g(t)dw$$

- x(0): real image, x(T): Gaussian noise.
- f(x,t): drift terms. g(t): diffusion coefficient.
- dw: Brownian motion
 - $w(t+u) w(t) \sim N(0,u)$
- f(x,t) and g(t) are parts of the model.

- Variance Exploding SDE: $dx = \sqrt{\frac{d[\sigma^2(t)]}{dt}}dw$. Variance Preserving SDE: $dx = -\frac{1}{2}\beta(t)xdt + \sqrt{\beta(t)}dw$.
- $\sigma(t)$, $\beta(t)$ are hyper-parameters.

Reversing the SDE

- Reversing the SDE: finding some stochastic process that goes from noise to data.
 - Use to generate data!
- Theorem (Anderson '82): there exists a reversing SDE, and it has a nice form:

$$dx = [f(x,t) - g^2(t)\nabla_x \log p_t(x)]dt + g(t)dw$$

• Strategy: learn the score function, then solve this reverse SDE.

Reversing the SDE

• Learning the score function: use score matching!

$$\arg\min_{\theta} \sum_{i} \lambda(\sigma_{i}) \mathbb{E}_{x \sim p_{\sigma_{i}, data}} \|s_{\theta}(x, i) - \nabla_{x} \log p_{\sigma_{i}, data}(x)\|^{2}$$

$$\Rightarrow \arg\min_{\theta} \mathbb{E}_{t \sim unif[0, T]} \mathbb{E}_{p_{t}(x)} \left[\lambda(t) \|s_{\theta}(x, t) - \nabla_{x} \log p_{t}(x)\|^{2}\right]$$

- Use existing techniques: sliced score matching
- No need to tune temperature schedule

 - Still need to choose a forward SDE, $\lambda(\sigma_i)$, etc Typically choose $\lambda(t) \propto 1/\mathbb{E} \left[\|\lambda_{x(t)} \log p(x(t) \mid x(0))\|^2 \right]$

Sampling by Solving the Reverse SDE

$$dx = [f(x,t) - g^2(t)\nabla_x \log p_t(x)]dt + g(t)dw$$

- Euler-Maruyama discretization:
 - $\Delta x \leftarrow [f(x,t) g^2(t)s_\theta(x,t)]\Delta t + g(t)\sqrt{\Delta t}z_t$
 - $x \leftarrow x + \Delta x$
 - $t \leftarrow t + \Delta t$
- Other solvers:
 - Runge-Kutta
 - Predictor-corrector (Song et al. '21)

Evaluating Probability by Converting to ODE

• De-randomizing SDE

$$dx = [f(x,t) - g^2(t)\nabla_x \log p_t(x)]dt + g(t)dw$$

$$dx = [f(x,t) - g^2(t)\nabla_x \log p_t(x)]dt, x(T) \sim p_T$$

- Given an initial distribution and an ODE, we can evaluate probability at any time
 - Say given $x(T) \sim p_T$ and dx = f(x, t)dt

$$\log p_0(x(0)) = \log p_T(X(T)) + \int_0^T Tr(Df_{\theta}(x, t))dt$$

• Solve via ODE.