
Energy-Based Models



Energy-based Models

• Goal	of	generative	models:	
• a	probability	distribution	of	data:	 	

• Requirements	
• 	(non-negative)	

• 	

• Energy-based	model:	
• Energy	function:	 ,	parameterized	by	 	

• 	(why	exp?)	

•

P(x)

P(x) ≥ 0

∫x
P(x)dx = 1

E(x; θ) θ

P(x) =
1
z

exp(−E(x; θ))

z = ∫z
exp(−E(x; θ))dx



Boltzmann Machine

• Generative	model		

• 	

• ,	 :	temperature	hyper-parameter	

• :	parameter	to	learn	
• When	 	is	binary,	patterns	are	affecting	each	other	through	

E(y) =
1
2

y⊤Wy

P(y) =
1
z

exp(−
E(y)
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Boltzmann Machine: Training

• Objective:	maximum	likelihood	learning	(assume	T	=1):	
• Probability	of	one	sample:	

	 	

• Maximum	log-likelihood:	

P(y) =
exp( 1

2 y⊤Wy)

∑y′ exp(y′ ⊤Wy′ )

L(W ) =
1
N ∑

y∈D

1
2

y⊤Wy − log∑
y′ 

exp(
1
2

y′ ⊤Wy′ )



Restricted Bolzmann Machine

• A	structured	Boltzmann	Machine	
• Hidden	neurons	are	only	connected	to	visible	neurons	
• No	intra-layer	connections	
• Invented	by	Paul	Smolensky	in	’89	
• Became	more	practical	after	Hinton	invested	fast	learning	algorithms	in	mid	
2000



Restricted Bolzmann Machine

• Computation	Rules	
• Iterative	sampling	

• Hidden	neurons	 :	 ,	 	

• Visible	neurons	 :	

hi zi = ∑
j

wijvj P(hi |v) =
1

1 + exp(−zi)

vj zj = ∑
i

wijhi, P(vj |h) =
1

1 + exp(−zj)



Restricted Bolzmann Machine

• Sampling:	
• Randomly	initialize	visible	neurons	 	
• Iterative	sampling	between	hidden	neurons	and	visible	neurons	
• Get	final	sample	 	

v0

(v∞, h∞)

• Training:	
• MLE	
• Sampling	to	approximate	gradient	



Restricted Bolzmann Machine

• Maximum	likelihood	estimated:	

• 	

• No	need	to	lift	up	the	entire	energy	landscape!	
• Raising	the	neighborhood	of	desired	patterns	is	sufficient	

∇wij
L(W ) =

1
NPK ∑

v∈P

v0ih0j −
1
M ∑ v∞ih∞j



Deep Bolzmann Machine

• Can	we	have	a	deep	version	of	RBM?	
• Deep	Belief	Net	(’06)	
• Deep	Boltzmann	Machine	(’09)	

• Sampling?	
• Forward	pass:	bottom-up	
• Backward	pass:	top-down	

• Deep	Bolzmann	Machine	
• The	very	first	deep	generative	model	
• Salakhudinov	&	Hinton	

deep belief net Deep Boltzmann Machine



Deep Bolzmann Machine



Summary

• Pros:	powerful	and	flexible	

• An	arbitrarily	complex	density	function	 	

• Cons:	hard	to	sample	/	train	
• Hard	to	sample:	

• MCMC	sampling	
• Partition	function	

• No	closed-form	calculation	for	likelihood	
• Cannot	optimize	MLE	loss	exactly	
• MCMC	sampling	

p(x) =
1
z

exp(−E(x))



Normalizing Flows



Intuition about easy to sample

• Goal:	design	 	such	that	
• Easy	to	sample	
• Tractable	likelihood	(density	function)	

• Easy	to	sample	
• Assume	a	continuous	variable	 	
• e.g.,	Gaussian	 ,	or	uniform	 	
• ,	 	is	also	easy	to	sample	

p(x)

z
z ∼ N(0,1) z ∼ Unif[0,1]

x = f(z) x



Intuition about tractable density

• Goal:	design	 	such	that	
• Assume	 	is	from	an	“easy”	distribution	
• 	has	tractable	likelihood	

• Uniform:	 	
• Density	 	
• ,	then	 	

f(z; θ)
z

p(x) = p( f(z; θ))

z ∼ Unif[0,1]
p(z) = 1

x = 2z + 1 p(x) = ?
!:ℝ → ℝ, ! & = 2& + 1

p(x)

p(z)

x

z



Intuition about tractable density

• Goal:	design	 	such	that	
• Assume	 	is	from	an	“easy”	distribution	
• 	has	tractable	likelihood	

• Uniform:	 	
• Density	 	
• ,	then	 	

• ,	then	 	(for	 )	

• ,	 	

• Assume	 	is	a	bijection	

f(z; θ)
z

p(x) = p( f(z; θ))

z ∼ Unif[0,1]
p(z) = 1

x = 2z + 1 p(x) = 1/2
x = az + b p(x) = 1/ |a | a ≠ 0

x = f(z) p(x) = p(z) |
dz
dx

| = | f′ (z) |−1 p(z)

f(z)

!:ℝ → ℝ, ! & = 2& + 1

p(x)

p(z)

x

z



Change of variable

• Suppose	 	for	some	general	non-linear	 	
• The	linearized	change	in	volume	is	determined	by	the	Jacobian	of	 :	

•
	

• Given	a	bijection	 	
• 	

•
	

• Since	 	(Jacobian	of	invertible	function)	

•
	

x = f(z) f( ⋅ )
f( ⋅ )

∂f(z)
∂z

=

∂f1(z)
∂z1

⋯
∂f1(z)
∂zd

⋯ ⋯ ⋯
∂fd(z)

∂z1
⋯

∂fd(z)
∂zd

f(z) : ℝd → ℝd

z = f −1(x)

p(x) = p( f −1(x)) det ( ∂f −1(x)
∂x ) = p(z) det ( ∂f −1(x)

∂x )
∂f −1

∂x
= ( ∂f

∂x )
−1

p(x) = p(z) det ( ∂f −1(x)
∂x ) = p(z) det ( ∂f(z)

∂z )
−1



Normalizing Flow

• Idea	
• Sample	 	from	an	“easy”	distribution,	e.g.,	standard	Gaussian	
• Apply	 	bijections	 	
• The	final	sample	 	has	tractable	desnity	

• Normalizing	Flow	
• 	where	 	and	 	is	invertible	
• Every	revertible	function	produces	a	normalized	density	function	

•
	

z0
K zi = fi(zi−1)

x = fK(zK)

z0 ∼ N(0,I ), zi = fi(zi−1), x = ZK x, zi ∈ ℝd fi

p(zi) = p(zi−1) det ( ∂fi
∂zi−1 )

−1



Normalizing Flow

• Generation	is	trivial	
• Sample	 	then	apply	the	transformations	

• Log-likelihood	

• 	

•
	

z0

log p(x) = log p(Zk−1) − log det ( ∂fK
∂zK−1 )

log p(x) = log p(z0) − ∑
i

log det ( ∂fi
∂zi−1 ) ! "# ‼!



Normalizing Flow

• Naive	flow	model	requires	extremely	expensive	computation	
• Computing	determinant	of	 	matrices	

• Idea:	
• Design	a	good	bijection	 	such	that	the	determinant	is	easy	to	compute	

d × d

fi(z)



Plannar Flow

• Technical	tool:	Matrix	Determinant	Lemma:	
• 	

• Model:	
• 	
• 	chosen	to	be	 	

• 	

• Computation	in	 	time	
• Remarks:	

• 	to	ensure	invertibility	
• Require	normalization	on	u	and	w	

det(A + uv⊤) + (1 + v⊤A−1u) det A

fθ(z) + z + u ⊙ h(w⊤z + b)
h( ⋅ ) tanh( ⋅ )(0 < h′ ( ⋅ ) < 1)

θ = [u, w, b], det ( ∂f
∂z ) = det(I + h′ (w⊤z + b)uw⊤) = 1 + h′ (w⊤z + b)u⊤w

O(d)

u⊤w > − 1



Planar Flow (Rezende & Mohamed, ’16)

• 	
• 10	planar	transformations	can	transform	simple	distributions	into	a	more	complex	
one	

fθ(z) = z + uh (w⊤z + b)



Extensions

• Other	flow	models	uses	triangular	Jacobian	(NICE,	Dinh	et	al.	’14)	

• Invertible	1x1	convolutions	(Kingma	et	al.	’18)	

• Auto-regressive	flow:	
• WaveNet	(Deepmind	’16)	
• PixelCNN	(Deepmind	‘16)	



Summary

• Pros:	
• Easy	to	sample	by	transforming	from	a	simple	distribution	
• Easy	to	evaluate	the	probability	
• Easy	training	(MLE)	

• Con	
• Most	restricted	neural	network	structure	
• Trade	expressiveness	for	tractability	



Score-Based Models 
and Diffusion Models



Recap: Boltzmann Machine Training

• Objective:	maximum	likelihood	learning	(assume	T	=1):	
• Probability	of	one	sample:	

	 	

• Maximum	log-likelihood:	

	

Can	we	avoid	calculating	the	gradient	of	normalizing	constant	( )?

P(y) =
exp( 1

2 y⊤Wy)

∑y′ exp(y′ ⊤Wy′ )

L(W ) =
1
N ∑

y∈D

1
2

y⊤Wy − log∑
y′ 

exp(
1
2

y′ ⊤Wy′ )

∇x Zθ



Score Matching

• Score	Function	
• Definition:	

	 	

• Idea:	directly	fitting	the	score	function:	

• 	

• No	need	to	compute	 !	

• Problem:	
• How	to	compute	 ?

∇x log pdata(x) : ℝd → ℝd

min
θ

𝔼pdata
∥∇x log pθ(x) − ∇x log pdata(x)∥2

∇x Zθ

∇x log pdata(x)



Score Matching



Score Matching



Sliced Score Matching

L(θ) =
1
N ∑

x∈D

∥sθ(x)∥2 − 2 [Tr(Dsθ(x))]



Score Matching: Langevin Dynamics

xt+1 ← xt + ϵ∇xlog p(x) + 2ϵzt, zt ∼ N(0,I)

Stationary	(equilibrium	distribution):	p(x)	



Practical Issues

• Score	function	estimation	is	inaccurate	in	low	density	regions	(few	data	available).	

• Sampling	is	Slow



Annealing: Denoising Score Matching

• Fit	several	“smoothed”	versions	of	 :	
• Choose	temperatures:	 	

• 	

• Implementation:		
• Take	a	sample	x,	draw	a	sample	 ,	output	 	

pdata
σ1, σ2, . . . , σT

pσi,data(x) = pdata(x) * N(0,σi) = ∫δ
pdata(x − δ)N(x; δ, σi)dδ

z ∼ N(0,σi) x′ = x + z .



Annealing: Denoising Score Matching

arg min
θ ∑

i

λ(σi)𝔼x∼pσi,data
∥sθ(x, i) − ∇xlog pσi,data(x)∥2



Annealed Langevin Dynamics



Diffusion Models

An image generated by Stable Diffusion based on the text prompt "a 
photograph of an astronaut riding a horse"



Perturbing Data with an SDE

• Let	the	number	of	noise	scales	approaches	infinity!



Stochastic Differential Equations

dx = f(x, t)dt + g(t)dw
• x(0):	real	image,	x(T):	Gaussian	noise.		

• f(x,t):	drift	terms.	g(t):	diffusion	coefficient.	

• dw:	Brownian	motion	
• 	

• f(x,t)	and	g(t)	are	parts	of	the	model.	

• Variance	Exploding	SDE:	 .	

• Variance	Preserving	SDE:	 .	

• 	are	hyper-parameters.

w(t + u) − w(t) ∼ N(0,u)

dx =
d[σ2(t)]

dt
dw

dx = −
1
2

β(t)xdt + β(t)dw

σ(t), β(t)



Reversing the SDE

• Reversing	the	SDE:	finding	some	stochastic	process	that	goes	from	noise	to	data.	
• Use	to	generate	data!	

• Theorem	(Anderson	’82):	there	exists	a	reversing	SDE,	and	it	has	a	nice	form:	

• Strategy:	learn	the	score	function,	then	solve	this	reverse	SDE.

dx = [ f(x, t) − g2(t)∇xlog pt(x)]dt + g(t)dw



Reversing the SDE

• Learning	the	score	function:	use	score	matching!	

• Use	existing	techniques:	sliced	score	matching	

• No	need	to	tune	temperature	schedule		
• Still	need	to	choose	a	forward	SDE,	 ,	etc	

• Typically	choose	
λ(σi)

λ(t) ∝ 1/𝔼 [∥λx(t) log p(x(t) ∣ x(0))∥2]

arg min
θ ∑

i

λ(σi)𝔼x∼pσi,data
∥sθ(x, i) − ∇xlog pσi,data(x)∥2

⇒ arg min
θ

𝔼t∼unif [0,T]𝔼pt(x) [λ(t)∥sθ(x, t) − ∇xlog pt(x)∥2]



Sampling by Solving the Reverse SDE

• Euler-Maruyama	discretization:	
• 	
• 	
• 	

• Other	solvers:	
• Runge-Kutta	
• Predictor-corrector	(Song	et	al.	’21)	

Δx ← [ f(x, t) − g2(t)sθ(x, t)]Δt + g(t) Δtzt
x ← x + Δx
t ← t + Δt

dx = [ f(x, t) − g2(t)∇xlog pt(x)]dt + g(t)dw



Evaluating Probability by Converting to ODE

• De-randomizing	SDE	

• Given	an	initial	distribution	and	an	ODE,	we	can	evaluate	probability	at	any	time	
• Say	given	 	and	 	

• Solve	via	ODE.	

x(T ) ∼ pT dx = f(x, t)dt

dx = [ f(x, t) − g2(t)∇xlog pt(x)]dt + g(t)dw

dx = [ f(x, t) − g2(t)∇xlog pt(x)]dt, x(T ) ∼ pT

log p0(x(0)) = log pT(X(T )) + ∫
T

0
Tr(Dfθ(x, t))dt


