Generative Adversarial Nets
Implicit Generative Model

• **Goal:** a sampler $g(\cdot)$ to generate images
• A simple generator $g(z; \theta)$:
 • $z \sim N(0,I)$
 • $x = g(z; \theta)$ deterministic transformation

• Likelihood-free training:
 • Given a dataset from some distribution p_{data}
 • Goal: $g(z; \theta)$ defines a distribution, we want this distribution $\approx p_{data}$
 • Training: minimize $D(g(z; \theta), p_{data})$
 • D is some distance metric (not likelihood)
 • Key idea: **Learn a differentiable** D
GAN (Goodfellow et al., ‘14)

- Parameterize the discriminator $D(\cdot ; \phi)$ with parameter ϕ

- **Goal:** learn ϕ such that $D(x; \phi)$ measures how likely x is from p_{data}
 - $D(x, \phi) = 1$ if $x \sim p_{data}$
 - $D(x, \phi) = 0$ if $x! \sim p_{data}$
 - a.k.a., a binary classifier

- GAN: use a neural network for $D(\cdot ; \phi)$

- **Training:** need both negative and positive samples
 - Positive samples: just the training data
 - Negative samples: use our sampler $g(z; \theta)$ (can provide infinite samples).

- **Overall objectives:**
 - Generator: $\theta^* = \max_{\theta} D(g(z; \theta); \phi)$
 - Discriminator uses MLE Training:
 $\phi^* = \max_{\phi} \mathbb{E}_{x \sim p_{data}}[\log D(x; \phi)] + \mathbb{E}_{\hat{x} \sim g(\cdot)}[\log(1 - D(\hat{x}; \phi))]$
GAN (Goodfellow et al., ‘14)

- Generator $g(z; \theta)$ where $z \sim N(0, I)$
 - Generate realistic data

- Discriminator $D(x; \phi)$
 - Classify whether the data is real (from p_{data}) or fake (from g)

- Objective function:
 $$L(\theta, \phi) = \min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim g(z; \theta)} \left[\log (1 - D(\hat{x}; \phi)) \right]$$

- Training procedure:
 - Collect dataset $\{(x, 1) | x \sim p_{data}\} \cup \{ (\hat{x}, 0) \sim g(z; \theta) \}$
 - Train discriminator $D : L(\phi) = \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim g(z; \theta)} \left[\log (1 - D(\hat{x}; \phi)) \right]$
 - Train generator $g : L(\theta) = \mathbb{E}_{z \sim N(0, I)} \left[\log D(g(z; \theta), \phi) \right]$
 - Repeat
GAN (Goodfellow et al., ‘14)

- Objective function:

$$L(\theta, \phi) = \min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim G} \left[\log(1 - D(\hat{x}; \phi)) \right]$$

![Diagram of GAN architecture]

(a) Real Samples
(b) Generated Fake Samples
(c) Fine Tune Training
(d) Learn data distribution
(e) Learn how to tell apart fake data from true data
Math Behind GAN

$$L(\theta, \phi) = \min_{\theta} \max_{\phi} \mathbb{E}_{x \sim \text{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{z \sim \mathcal{N}(0,1)} \left[\log (1 - D(z; \phi)) \right]$$

- Let D^*, g^* be the solution to L.

For a given x, optimal $D^*(x)$

$$L_x(D) = P_{\text{data}}(x) \cdot \log D(x) + P_g(x) \cdot \log (1 - D(x))$$

For D^*, $\frac{\partial^2 L_x}{\partial D} = 0$, first-order condition

$$\Rightarrow \frac{P_{\text{data}}(x)}{D^*(x)} - \frac{P_g(x)}{1 - D^*(x)} = 0$$

$$= \frac{D^*(x)}{\frac{P_{\text{data}}(x)}{P_g(x)}} = \frac{P_{\text{data}}(x)}{1 + P_{\text{data}}(x) / P_g(x)}$$

$$\text{(I)} \quad P_g = P_{\text{data}}, \quad \Rightarrow \quad D^*(x) = 0.5$$
Math Behind GAN

Consider optimal g^*, given optimal D^*

$$L(\Theta, \Phi) = \mathbb{E}_{x \sim P_{\text{data}}} \left[\log \frac{(P_{\text{data}}(x))}{(P_{\text{data}}(x) + P_g(x))} \right] + \mathbb{E}_{x \sim P_g} \left[\log \frac{P_g(x)}{P_{\text{data}}(x) + P_g(x)} \right]$$

$$= \mathbb{E}_{x \sim P_{\text{data}}} \left[\log \left(\frac{1}{2} \right) \right] + \mathbb{E}_{x \sim P_g} \left[\log \left(\frac{1}{2} \right) \right] - \log 4 - \log 4$$

2. Jensen-Shannon Divergence
KL-Divergence and JS-Divergence

\[-\text{KL}(p \| q) = \mathbb{E}_p \left[\log \frac{p(x)}{q(x)} \right] \]

- asymmetric

\[-\text{JS}(p \| q) = \frac{1}{2} \left(\text{KL}(p \| q) + \text{KL}(q \| p) \right) \]

symmetric, \(\text{JS}(p \| q) \geq 0 \)

\[\text{JS}(p \| q) = 0 \iff p = q \]
Math Behind GAN

\[\text{Given } D^* \]

\[\min_{\theta} J(\theta) = 2 \cdot \text{JS}(P_g \parallel P_{\text{data}}) - \log 4 \]

\[\geq 0 \]

\[\Rightarrow \text{global minimize } g^* \]

\[g^* = P_{\text{data}} \]

\[L^* = -\log 4 \]
Evaluation of GAN

- No $p(x)$ in GAN.
- Idea: use a trained classifier $f(y \mid x)$:
 - If $x \sim p_{data}$, $f(y \mid x)$ should have low entropy
 - Otherwise, $f(y \mid x)$ close to uniform.
- Samples from G should be diverse:
 - $p_f(y) = \mathbb{E}_{x \sim G}[f(y \mid x)]$ close to uniform.

Similar labels sum to give focussed distribution

Different labels sum to give uniform distribution
Evaluation of GAN

- **Inception Score** (IS, Salimans et al. ’16)
 - Use Inception V3 trained on ImageNet as $f(y|x)$
 - $IS = \exp \left(\mathbb{E}_{x \sim G} \left[KL(f(y|x) \mid \mid p_f(y))) \right] \right)$
 - Higher the better

High KL divergence
- Ideal situation
- Generated images are not distinctly one label

Medium KL divergence
- Low KL divergence
- Generated images are not distinctly one label

Low KL divergence
- Generator lacks diversity

| Label distribution | Marginal distribution |
Comments on GAN

- Other evaluation metrics:
 - Fréchet Inception Distance (FID): Wasserstein distance between Gaussians

- Mode collapse:
 - The generator only generate a few type of samples.
 - Or keep oscillating over a few modes.

- Training instability:
 - Discriminator and generator may keep oscillating
 - Example: $-xy$, generator x, discriminatory. NE: $x = y = 0$ but GD oscillates.
 - No stopping criteria.
 - Use Wasserstein GAN (Arjovsky et al. ’17):
 \[
 \min_G \max_{f: \text{Lip}(f) \leq 1} \mathbb{E}_{x \sim p_{\text{data}}} [f(x)] - \mathbb{E}_{\hat{x} \sim p_G} [f(\hat{x})]
 \]
 - And need many other tricks...
Variational Autoencoder
Architecture

- Auto-encoder: $x \rightarrow z \rightarrow x$
- Encoder: $q(z \mid x; \phi) : x \rightarrow z$
- Decoder: $p(x \mid z; \theta) : z \rightarrow x$

- Isomorphic Gaussian:
 $q(z \mid x; \phi) = N(\mu(x; \phi), \text{diag}(\exp(\sigma(x; \phi))))$
- Gaussian prior: $p(z) = N(0, I)$
- Gaussian likelihood: $p(x \mid z; \theta) \sim N(f(z; \theta), I)$

- Probabilistic model interpretation: latent variable model.

```
\n(\mathbb{E}(x)) \sim X
```

easy to generate: $Z \sim N(0, I)$

draw $k \sim \text{exp}(\cdot); \theta)$
VAE Training

- Training via optimizing ELBO
 \[L(\phi, \theta; x) = \mathbb{E}_{z \sim q(z|x; \phi)}[\log p(z|x; \theta)] - KL\left(q(z|x; \phi) \parallel p(z) \right) \]
 - Likelihood term + KL penalty

 - KL penalty for Gaussians has closed form.

- Likelihood term (reconstruction loss):
 - Monte-Carlo estimation
 - Draw samples from \(q(z|x; \phi) \)
 - Compute gradient of \(\theta \):
 - \(x \sim N(f(z; \theta); I) \)
 - \(p(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2} ||x - f(z; \theta)||^2) \)

\[
L(\mu, \Sigma) = \mathbb{E}_{z \sim q(z|x)}[\log p(x|z)] - KL\left(q(z|x) \parallel p(z) \right)
\]

\[
L(\phi, \theta; x) = \mathbb{E}_{z \sim q(z|x; \phi)}[\log p(z|x; \theta)] - KL\left(q(z|x; \phi) \parallel p(z) \right)
\]

\[
L(\phi, \theta; x) = \mathbb{E}_{z \sim q(z|x; \phi)}[\log p(z|x; \theta)] - KL\left(q(z|x; \phi) \parallel p(z) \right)
\]

\[
L(\phi, \theta; x) = \mathbb{E}_{z \sim q(z|x; \phi)}[\log p(z|x; \theta)] - KL\left(q(z|x; \phi) \parallel p(z) \right)
\]
VAE Training

- Likelihood term (reconstruction loss):
 - Gradient for ϕ. Loss: $L(\phi) = \mathbb{E}_{z \sim q(z; \phi)} \left[\log p(x | z) \right]$
 - Reparameterization trick:
 - $z \sim N(\mu, \Sigma) \iff z = \mu + \epsilon, \epsilon \sim N(0, \Sigma)$
 - $L(\phi) \propto \mathbb{E}_{z \sim q(z|\phi)} \left[\|f(z; \theta) - x\|^2 \right]$
 - $\propto \mathbb{E}_{\epsilon \sim N(0,I)} \left[\|f(\mu(x; \phi) + \sigma(x; \phi) \cdot \epsilon; \theta) - x\|^2 \right]$
 - Monte-Carlo estimate for $\nabla L(\phi)$
 - In practice, 1 sample is sufficient
 - End-to-end training

\[\Theta, \phi \]
VAE vs. AE

- AE: classical unsupervised representation learning method.
- VAE: a probabilistic model of AE
 - AE + Gaussian noise on z
 - KL penalty: L_2 constraint on the latent vector z
Conditioned VAE

- Semi-supervised learning: some labels are also available

\[P \left(x \mid z, y, \theta \right) \]

conditioned generation
Comments on VAE

• **Pros:**
 • Flexible architecture
 • Stable training

• **Cons:**
 • Inaccurate probability evaluation (approximate inference)
Energy-Based Models
Energy-based Models

- Goal of generative models:
 - a probability distribution of data: \(P(x) \)

- Requirements
 - \(P(x) \geq 0 \) (non-negative)
 - \(\int_x P(x)dx = 1 \)

- Energy-based model:
 - Energy function: \(E(x; \theta) \), parameterized by \(\theta \)
 - \(P(x) = \frac{1}{z} \exp(-E(x; \theta)) \) (why exp?)
 - \(z = \int_z \exp(-E(x; \theta))dx \)
Boltzmann Machine

- Generative model
 - $E(y) = \frac{1}{2} y^T W y$
 - $P(y) = \frac{1}{z} \exp(-\frac{E(y)}{T})$, T: temperature hyper-parameter
- W: parameter to learn
- When y_i is binary, patterns are affecting each other through W

\[
E(y) = \frac{1}{2} y^T W y
\]

\[
P(y) = \frac{1}{z} \exp(-\frac{E(y)}{T})
\]

\[
S = y
\]

\[
z_i = \frac{1}{T} \sum_j w_{ji} s_j
\]

\[
P(s_i = 1|s_j \neq i) = \frac{1}{1 + e^{-z_i}}
\]
Boltzmann Machine: Training

- Objective: maximum likelihood learning (assume $T=1$):
 - Probability of one sample:
 \[
 P(y) = \frac{\exp\left(\frac{1}{2} y^T W y\right)}{\sum_{y'} \exp(y'^T W y')}
 \]
 - Maximum log-likelihood:
 \[
 L(W) = \frac{1}{N} \sum_{y \in D} \frac{1}{2} y^T W y - \log \sum_{y'} \exp\left(\frac{1}{2} y'^T W y'\right)
 \]
Boltzmann Machine: Training

\[L(W) = \frac{1}{N} \sum_{y \in D} \frac{1}{2} y^T W y - \log \sum_{y'} \exp \left(\frac{1}{2} y'^T W y' \right) \]

\[W \in \mathbb{D} \text{ and} \]

\[\nabla_{w_{ij}} L = \frac{1}{N} \sum_{y \in D} y_i \cdot y_j - \frac{1}{2} \frac{\exp \left(\frac{1}{2} y'^T W y' \right) y_i \cdot y_j}{\sum_{y'} \exp \left(\frac{1}{2} y'^T W y' \right)} \]

\[\mathbb{E}_{y \sim \mathbb{D}} (y_i \cdot y_j) \]

\[\Rightarrow \text{Monte Carlo sample } S = \{ y_1, \ldots, y_M \} \]

\[\Rightarrow \nabla_{w_{ij}} L \approx \frac{1}{N} \sum_{y \in D} y_i \cdot y_j - \frac{1}{N^2} \sum_{s \in S} y_i \cdot y_j \]
Boltzmann Machine: Sampling

\[M C M C \]

- Initialize \(y(0) \in \mathcal{D} \)

\[\text{for } t = 1, \ldots, N/2 \]

- Iterate over \(j = 1, \ldots, d \) conditional sampling

\[y_j(t) \sim P(\cdot | y_{\neq j}(t-1)) \]

\[= \{ y(0), \ldots, y(t) \} \]
Restricted Bolzmann Machine

- A structured Boltzmann Machine
 - Hidden neurons are only connected to visible neurons
 - No intra-layer connections
 - Invented by Paul Smolensky in ’89
 - Became more practical after Hinton invested fast learning algorithms in mid 2000
Restricted Boltzmann Machine

- Computation Rules
 - Iterative sampling

 Hidden neurons h_i: $z_i = \sum_j w_{ij} v_j$, $P(h_i | v) = \frac{1}{1 + \exp(-z_i)}$

 Visible neurons v_j: $z_j = \sum_i w_{ij} h_i$, $P(v_j | h) = \frac{1}{1 + \exp(-z_j)}$
Restricted Boltzmann Machine

• Sampling:
 - Randomly initialize visible neurons \(v_0 \)
 - Iterative sampling between hidden neurons and visible neurons
 - Get final sample \((v_\infty, h_\infty)\)

• Training:
 - MLE
 - Sampling to approximate gradient
Restricted Boltzmann Machine

- Maximum likelihood estimated:
 \[\nabla_{w_{ij}} L(W) = \frac{1}{NPK} \sum_{v \in P} v_0 i h_{0j} - \frac{1}{M} \sum v_\infty i h_\infty j \]

- No need to lift up the entire energy landscape!
 - Raising the neighborhood of desired patterns is sufficient
Deep Boltzmann Machine

- Can we have a **deep** version of RBM?
 - Deep Belief Net (’06)
 - Deep Boltzmann Machine (’09)

- Sampling?
 - Forward pass: bottom-up
 - Backward pass: top-down

- Deep Boltzmann Machine
 - The very first deep generative model
 - Salakhudinov & Hinton
Deep Bolzmann Machine

Deep Boltzmann Machine

4000 units

4000 units

4000 units

Preprocessed transformation

Stereo pair

Gaussian visible units (raw pixel data)

Training Samples

Generated Samples
Summary

- **Pros:** powerful and flexible
 - An arbitrarily complex density function \(p(x) = \frac{1}{z} \exp(-E(x)) \)

- **Cons:** hard to sample / train
 - Hard to sample:
 - MCMC sampling
 - Partition function
 - No closed-form calculation for likelihood
 - Cannot optimize MLE loss exactly
 - MCMC sampling