Generative Adversarial Nets
Implicit Generative Model

- **Goal:** a sampler \(g(\cdot) \) to generate images
- A simple generator \(g(z; \theta) \):
 - \(z \sim N(0,I) \)
 - \(x = g(z; \theta) \) deterministic transformation

- Likelihood-free training:
 - Given a dataset from some distribution \(p_{data} \)
 - Goal: \(g(z; \theta) \) defines a distribution, we want this distribution \(\approx p_{data} \)
 - Training: minimize \(D(g(z; \theta), p_{data}) \)
 - \(D \) is some distance metric (not likelihood)
 - Key idea: **Learn a differentiable** \(D \)
GAN (Goodfellow et al., ‘14)

- Parameterize the discriminator $D(\cdot ; \phi)$ with parameter ϕ

Goal: learn ϕ such that $D(x; \phi)$ measures how likely x is from p_{data}
- $D(x, \phi) = 1$ if $x \sim p_{data}$
- $D(x, \phi) = 0$ if $x! \sim p_{data}$
- a.k.a., a binary classifier

- GAN: use a neural network for $D(\cdot ; \phi)$

Training: need both negative and positive samples
- Positive samples: just the training data
- Negative samples: use our sampler $g(z; \theta)$ (can provide infinite samples).

Overall objectives:
- Generator: $\theta^* = \max_{\theta} D(g(z; \theta); \phi)$
- Discriminator uses MLE Training:
 $$\phi^* = \max_{\phi} \mathbb{E}_{x \sim p_{data}}[\log D(x; \phi)] + \mathbb{E}_{\hat{x} \sim g(\cdot)}[\log(1 - D(\hat{x}; \phi))]$$
GAN (Goodfellow et al., ‘14)

• Generator $g(z; \theta)$ where $z \sim N(0,I)$
 • Generate realistic data

• Discriminator $D(x; \phi)$
 • Classify whether the data is real (from p_{data}) or fake (from g)

• Objective function:
 $$L(\theta, \phi) = \min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim g(z, \theta)} \left[\log(1 - D(\hat{x}; \phi)) \right]$$

• Training procedure:
 • Collect dataset $\{(x, 1) \mid x \sim p_{data}\} \cup \{((\hat{x}, 0) \sim g(z; \theta)\}$
 • Train discriminator
 $$D : L(\phi) = \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim g(z, \theta)} \left[\log(1 - D(\hat{x}; \phi)) \right]$$
 • Train generator $g : L(\theta) = \mathbb{E}_{z \sim N(0,I)} \left[\log D(g(z; \theta), \phi) \right]$
 • Repeat
GAN (Goodfellow et al., ‘14)

- Objective function:
 \[L(\theta, \phi) = \min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim G} \left[\log (1 - D(\hat{x}; \phi)) \right] \]
Math Behind GAN
Math Behind GAN
KL-Divergence and JS-Divergence
Math Behind GAN
Evaluation of GAN

- No $p(x)$ in GAN.
- Idea: use a trained classifier $f(y \mid x)$:
 - If $x \sim p_{data}, f(y \mid x)$ should have low entropy
 - Otherwise, $f(y \mid x)$ close to uniform.
- Samples from G should be diverse:
 - $p_f(y) = \mathbb{E}_{x \sim G}[f(y \mid x)]$ close to uniform.
Evaluation of GAN

- **Inception Score** (IS, Salimans et al. ’16)
 - Use Inception V3 trained on ImageNet as $f(y | x)$
 - $IS = \exp \left(\mathbb{E}_{x \sim G} \left[KL(f(y | x) || p_f(y)) \right] \right)$
 - Higher the better
Comments on GAN

• Other evaluation metrics:
 • Fréchet Inception Distance (FID): Wasserstein distance between Gaussians

• Mode collapse:
 • The generator only generate a few type of samples.
 • Or keep oscillating over a few modes.

• Training instability:
 • Discriminator and generator may keep oscillating
 • Example: $-xy$, generator x, discriminatory. NE: $x = y = 0$ but GD oscillates.
 • No stopping criteria.
 • Use Wasserstein GAN (Arjovsky et al. ’17):
 $\min G \max f: \text{Lip}(f) \leq 1 \mathbb{E}_{x \sim p_{data}} [f(x)] - \mathbb{E}_{\hat{x} \sim p_G} [f(\hat{x})]$
 • And need many other tricks...
Variational Autoencoder
Architecture

- Auto-encoder: $x \rightarrow z \rightarrow x$
- Encoder: $q(z \mid x; \phi) : x \rightarrow z$
- Decoder: $p(x \mid z; \theta) : z \rightarrow x$

- Isomorphic Gaussian:
 $q(z \mid x; \phi) = N(\mu(x; \phi), \text{diag}(\exp(\sigma(x; \phi))))$
- Gaussian prior: $p(z) = N(0, I)$
- Gaussian likelihood: $p(x \mid z; \theta) \sim N(f(z; \theta), I)$

- Probabilistic model interpretation: latent variable model.
VAE Training

- Training via optimizing ELBO
 \[L(\phi, \theta; x) = \mathbb{E}_{z \sim q(z|x; \phi)}[\log p(z | x; \theta)] - KL \left(q(z | x; \phi) \left| \left| p(z) \right. \right) \right) \]
 - Likelihood term + KL penalty

- KL penalty for Gaussians has closed form.
- Likelihood term (reconstruction loss):
 - Monte-Carlo estimation
 - Draw samples from \(q(z | x; \phi) \)
 - Compute gradient of \(\theta \):
 - \(x \sim N(f(z; \theta); I) \)
 - \(p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\|x - f(z; \theta)\|^2\right) \)
VAE Training

- Likelihood term (reconstruction loss):
 - Gradient for ϕ. Loss: $L(\phi) = \mathbb{E}_{z \sim q(z; \phi)} \left[\log p(x | z) \right]$
 - Reparameterization trick:
 - $z \sim N(\mu, \Sigma) \iff z = \mu + \epsilon, \epsilon \sim N(0, \Sigma)$
 - $L(\phi) \propto \mathbb{E}_{z \sim q(z|\phi)} \left[\| f(z; \theta) - x \|_2^2 \right]$
 - $\propto \mathbb{E}_{e \sim N(0,I)} \left[\| f(\mu(x; \phi) + \sigma(x; \phi) \cdot \epsilon; \theta) - x \|_2^2 \right]$
 - Monte-Carlo estimate for $\nabla L(\phi)$

- End-to-end training
VAE vs. AE

- **AE**: classical unsupervised representation learning method.
- **VAR**: a probabilistic model of AE
 - AE + Gaussian noise on \(z \)
 - KL penalty: \(L_2 \) constraint on the latent vector \(z \)
Conditioned VAE

- Semi-supervised learning: some labels are also available

conditioned generation
Comments on VAE

• Pros:
 • Flexible architecture
 • Stable training

• Cons:
 • Inaccurate probability evaluation (approximate inference)
Energy-Based Models
Energy-based Models

• Goal of generative models:
 • a probability distribution of data: \(P(x) \)

• Requirements
 • \(P(x) \geq 0 \) (non-negative)

 \[
 \int_{x} P(x) dx = 1
 \]

• Energy-based model:
 • Energy function: \(E(x; \theta) \), parameterized by \(\theta \)

 \[
 P(x) = \frac{1}{z} \exp(-E(x; \theta)) \text{ (why exp?)}
 \]

 \[
 z = \int_{z} \exp(-E(x; \theta)) dx
 \]
Boltzmann Machine

- Generative model
 - \(E(y) = \frac{1}{2} y^\top W y \)
 - \(P(y) = \frac{1}{Z} \exp(-\frac{E(y)}{T}) \), \(T \): temperature hyper-parameter
 - \(W \): parameter to learn
 - When \(y_i \) is binary, patterns are affecting each other through \(W \)

\[
Z_i = \frac{1}{T} \sum_j w_{ji} s_j
\]

\[
P(s_i = 1|s_j \neq i) = \frac{1}{1 + e^{-Z_i}}
\]
Boltzmann Machine: Training

- Objective: maximum likelihood learning (assume $T=1$):
 - Probability of one sample:
 \[P(y) = \frac{\exp(\frac{1}{2}y^\top Wy)}{\sum_{y'} \exp(y'^\top Wy')} \]
 - Maximum log-likelihood:
 \[L(W) = \frac{1}{N} \sum_{y \in D} \frac{1}{2} y^\top Wy - \log \sum_{y'} \exp(\frac{1}{2} y'^\top W y') \]
Boltzmann Machine: Training
Boltzmann Machine: Sampling
Restricted Boltzmann Machine

- A structured Boltzmann Machine
 - Hidden neurons are only connected to visible neurons
 - No intra-layer connections
 - Invented by Paul Smolensky in ’89
 - Became more practical after Hinton invested fast learning algorithms in mid 2000
Restricted Bolzmann Machine

- Computation Rules
 - Iterative sampling

 Hidden neurons \(h_i \):
 \[
 z_i = \sum_j w_{ij} v_j, \quad P(h_i | v) = \frac{1}{1 + \exp(-z_i)}
 \]

 Visible neurons \(v_j \):
 \[
 z_j = \sum_i w_{ij} h_i, \quad P(v_j | h) = \frac{1}{1 + \exp(-z_j)}
 \]
Restricted Bolzmann Machine

- Sampling:
 - Randomly initialize visible neurons v_0
 - Iterative sampling between hidden neurons and visible neurons
 - Get final sample (v_∞, h_∞)

- Training:
 - MLE
 - Sampling to approximate gradient
Restricted Boltzmann Machine

- Maximum likelihood estimated:
 \[\nabla_{wij} L(W) = \frac{1}{NPK} \sum_{v \in P} v_0h_{0j} - \frac{1}{M} \sum v_\infty h_{\infty j} \]

- No need to lift up the entire energy landscape!
 - Raising the neighborhood of desired patterns is sufficient
Deep Boltzmann Machine

- Can we have a **deep** version of RBM?
 - Deep Belief Net (’06)
 - Deep Boltzmann Machine (’09)

- Sampling?
 - Forward pass: bottom-up
 - Backward pass: top-down

- Deep Boltzmann Machine
 - The very first deep generative model
 - Salakhudinov & Hinton
Deep Boltzmann Machine

Deep Boltzmann Machine

4000 units

4000 units

4000 units

Preprocessed transformation

Stereo pair

Gaussian visible units (raw pixel data)

Training Samples

Generated Samples
Summary

• Pros: powerful and flexible
 • An arbitrarily complex density function $p(x) = \frac{1}{z} \exp(-E(x))$

• Cons: hard to sample / train
 • Hard to sample:
 • MCMC sampling
 • Partition function
 • No closed-form calculation for likelihood
 • Cannot optimize MLE loss exactly
 • MCMC sampling