Generative Adversarial Nets

Implicit Generative Model

- Goal: a sampler $g(\cdot)$ to generate images
- A simple generator $g(z; \theta)$:
 - $z \sim N(0,I)$
 - $x = g(z; \theta)$ deterministic transformation
- Likelihood-free training:
 - Given a dataset from some distribution p_{data}
 - Goal: $g(z; \theta)$ defines a distribution, we want this distribution $\approx p_{data}$
 - Training: minimize $D(g(z; \theta), p_{data})$
 - *D* is some distance metric (not likelihood)
 - Key idea: *Learn* a differentiable D

GAN (Goodfellow et al., '14)

- Parameterize the discriminator $D(\ \cdot\ ;\phi)$ with parameter ϕ
- Goal: learn ϕ such that $D(x; \phi)$ measures how likely x is from p_{data}
 - $D(x, \phi) = 1$ if $x \sim p_{data}$
 - $D(x, \phi) = 0$ if $x! \sim p_{data}$
 - a.k.a., a binary classifier
- GAN: use a neural network for $D(\;\cdot\;;\phi)$
- Training: need both negative and positive samples
 - Positive samples: just the training data
 - Negative samples: use our sampler $g(z; \theta)$ (can provide infinite samples).
- Overall objectives:
 - Generator: $\theta^* = \max_{\alpha} D(g(z; \theta); \phi)$
 - Discriminator uses MLE Training:

$$\phi^* = \max_{\phi} \mathbb{E}_{x \sim p_{data}}[\log D(x;\phi)] + \mathbb{E}_{\hat{x} \sim g(\cdot)}[\log(1 - D(\hat{x};\phi))]$$

GAN (Goodfellow et al., '14)

- Generator $g(z; \theta)$ where $z \sim N(0,I)$
 - Generate realistic data
- Discriminator $D(x; \phi)$
 - Classify whether the data is real (from p_{data}) or fake (from g)
- Objective function:

 $L(\theta, \phi) = \min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim g(z, \theta)} \left[\log(1 - D(\hat{x}; \phi)) \right]$

- Training procedure:
 - Collect dataset $\{(x,1) | x \sim p_{data}\} \cup \{(\hat{x},0) \sim g(z;\theta)\}$
 - Train discriminator

 $D: L(\phi) = \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim g(z, \theta)} \left[\log(1 - D(\hat{x}; \phi)) \right]$

- Train generator $g: L(\theta) = \mathbb{E}_{z \sim N(0,I)} \left[\log D(g(z; \theta), \phi) \right]$
- Repeat

GAN (Goodfellow et al., '14)

• Objective function:

 $L(\theta, \phi) = \min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim G} \left[\log(1 - D(\hat{x}; \phi)) \right]$

Math Behind GAN

Math Behind GAN

KL-Divergence and JS-Divergence

Math Behind GAN

Evaluation of GAN

- No p(x) in GAN.
- Idea: use a trained classifier $f(y \mid x)$:
- If $x \sim p_{data}$, $f(y \mid x)$ should have low entropy
 - Otherwise, $f(y \mid x)$ close to uniform.
- Samples from G should be diverse:
 - $p_f(y) = \mathbb{E}_{x \sim G}[f(y \mid x)]$ close to uniform.

Similar labels sum to give focussed distribution

Different labels sum to give uniform distribution

Evaluation of GAN

- Inception Score (IS, Salimans et al. '16)
 - Use Inception V3 trained on ImageNet as f(y | x)

•
$$IS = \exp\left(\mathbb{E}_{x \sim G}\left[KL(f(y \mid x) \mid \mid p_f(y)))\right]\right)$$

• Higher the better

Marginal distribution

Comments on GAN

- Other evaluation metrics:
 - Fréchet Inception Distance (FID): Wasserstein distance between Gaussians
- Mode collapse:
 - The generator only generate a few type of samples.
 - Or keep oscillating over a few modes.
- Training instability:
 - Discriminator and generator may keep oscillating
 - Example: -xy, generator x, discriminatory. NE: x = y = 0 but GD oscillates.
 - No stopping criteria.
 - Use Wsserstein GAN (Arjovsky et al. '17): $\min_{G} \max_{f: \mathsf{Lip}(f) \leq 1} \mathbb{E}_{x \sim p_{data}} \left[f(x) \right] - \mathbb{E}_{\hat{x} \sim p_{G}} [f(\hat{x})]$
 - And need many other tricks...

Variational Autoencoder

Architecture

- Auto-encoder: $x \rightarrow z \rightarrow x$
- Encoder: $q(z | x; \phi) : x \to z$
- Decoder: $p(x | z; \theta) : z \to x$

- Isomorphic Gaussian:
- $q(z \mid x; \phi) = N(\mu(x; \phi), \operatorname{diag}(\exp(\sigma(x; \phi))))$
- Gaussian prior: p(z) = N(0,I)
- Gaussian likelihood: $p(x | z; \theta) \sim N(f(z; \theta), I)$
- Probabilistic model interpretation: latent variable model.

VAE Training

- Training via optimizing ELBO
 - $L(\phi, \theta; x) = \mathbb{E}_{z \sim q(z|x;\phi)}[\log p(z|x;\theta)] KL(q(z|x;\phi)||p(z))$
 - Likelihood term + KL penalty

- Likelihood term (reconstruction loss):
 - Monte-Carlo estimation
 - Draw samples from $q(z | x; \phi)$
 - Compute gradient of θ :

VAE Training

• Likelihood term (reconstruction loss):

- Gradient for ϕ . Loss: $L(\phi) = \mathbb{E}_{z \sim q(z;\phi)} \left[\log p(x \mid z) \right]$
- Reparameterization trick:

•
$$z \sim N(\mu, \Sigma) \Leftrightarrow z = \mu + \epsilon, \epsilon \sim N(0, \Sigma)$$

• $L(\phi) \propto \mathbb{E}_{z \sim q(z|\phi)} \left[\|f(z;\theta) - x\|_2^2 \right]$ $\propto \mathbb{E}_{\epsilon \sim N(0,I)} \left[\|f(\mu(x;\phi) + \sigma(x;\phi) \cdot \epsilon;\theta) - x\|_2^2 \right]$

• Monte-Carlo estimate for $\nabla L(\phi)$

• End-to-end training

VAE vs. AE

- AE: classical unsupervised representation learning method.
- VAR: a probabilistic model of AE
 - AE + Gaussian noise on z
 - KL penalty: L_2 constraint on the latent vector z

Conditioned VAE

• Semi-supervised learning: some labels are also available

conditioned generation

Comments on VAE

- Pros:
 - Flexible architecture
 - Stable training
- Cons:
 - Inaccurate probability evaluation (approximate inference)

Energy-Based Models

Energy-based Models

- Goal of generative models:
 - a probability distribution of data: P(x)
- Requirements
 - $P(x) \ge 0$ (non-negative) • $\int_{x} P(x)dx = 1$
- Energy-based model:
 - Energy function: $E(x; \theta)$, parameterized by θ

•
$$P(x) = \frac{1}{z} \exp(-E(x;\theta))$$
 (why exp?)
• $z = \int_{z} \exp(-E(x;\theta)) dx$

Boltzmann Machine

• Generative model

•
$$E(y) = \frac{1}{2}y^{\top}Wy$$

• $P(y) = \frac{1}{z}\exp(-\frac{E(y)}{T})$, T: temperature hyper-parameter

- W: parameter to learn
- When y_i is binary, patterns are affecting each other through W

$$z_i = \frac{1}{T} \sum_j w_{ji} s_j$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

Boltzmann Machine: Training

- Objective: maximum likelihood learning (assume T =1):
 - Probability of one sample:

$$P(y) = \frac{\exp(\frac{1}{2}y^{\top}Wy)}{\sum_{y'}\exp(y'^{\top}Wy')}$$

• Maximum log-likelihood:

$$L(W) = \frac{1}{N} \sum_{y \in D} \frac{1}{2} y^{\mathsf{T}} W y - \log \sum_{y'} \exp(\frac{1}{2} y'^{\mathsf{T}} W y')$$

Boltzmann Machine: Training

Boltzmann Machine: Sampling

- A structured Boltzmann Machine
 - Hidden neurons are only connected to visible neurons
 - No intra-layer connections
 - Invented by Paul Smolensky in '89
 - Became more practical after Hinton invested fast learning algorithms in mid 2000

- Computation Rules
 - Iterative sampling

• Hidden neurons
$$h_i: z_i = \sum_j w_{ij} v_j$$
, $P(h_i | v) = \frac{1}{1 + \exp(-z_i)}$
• Visible neurons $v_j: z_j = \sum_i w_{ij} h_i$, $P(v_j | h) = \frac{1}{1 + \exp(-z_j)}$

- Sampling:
 - Randomly initialize visible neurons v₀
 - Iterative sampling between hidden neurons and visible neurons
 - Get final sample (v_{∞}, h_{∞})
- Training:
 - MLE
 - Sampling to approximate gradient

• Maximum likelihood estimated:

•
$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{v \in P} v_{0i} h_{0j} - \frac{1}{M} \sum_{v \in N} v_{\infty i} h_{\infty j}$$

- No need to lift up the entire energy landscape!
 - Raising the neighborhood of desired patterns is sufficient

Deep Bolzmann Machine

- Can we have a **deep** version of RBM?
 - Deep Belief Net ('06)
 - Deep Boltzmann Machine ('09)
- Sampling?
 - Forward pass: bottom-up
 - Backward pass: top-down
- Deep Bolzmann Machine
 - The very first deep generative model
 - Salakhudinov & Hinton

Deep Bolzmann Machine

Deep Boltzmann Machine

Gaussian visible units (raw pixel data)

Training Samples									
and the second	A.	B	A.	T	营				
\$	Y	X	1	E C	B				
		(m)		*	1				
Ť	- Ale	Ś	-ange	1	- Martin				
A		X	1	E.	(B)				
(inter	S.S.S.	Ť	A.	-	54 a				

Generated Samples

×	K	80C	U	258	ħ
12	1	\$	营	净	1
U	¥	3	10	5	1ª
X	to	£	X	100	1
¢	Y	あって	1	ā	父
Se al	L	乱	X	×.	於

Summary

- Pros: powerful and flexible
 - An arbitrarily complex density function $p(x) = \frac{1}{z} \exp(-E(x))$
- Cons: hard to sample / train
 - Hard to sample:
 - MCMC sampling
 - Partition function
 - No closed-form calculation for likelihood
 - Cannot optimize MLE loss exactly
 - MCMC sampling