Attention Mechanism

W

Machine Translation

e Before 2014: Statistical Machine Translation (SMT)
e Extremely complex systems that require massive human efforts
e Separately designhed components
e A lot of feature engineering
e Lots of linguistic domain knowledge and expertise

e Before 2016:
e Google Translate is based on statistical machine learning

e What happened in 20147
e Neural machine translation (NMT)

Sequence to Sequence Model

e Neural Machine Translation (NMT)
e Learning to translate via a single end-to-end neural network.

 Source language sentence X, target language sentence Y = f(X; 0)

e Sequence to Sequence Model (Seq2Seq, Sutskever et al. , ‘14)
e Two RNNs: f,,.and f,,.

e Encoderf,, .

e Takes X as input, and output the initial hidden state for decoder

e Can use bidirectional RNN
e Decoder f,,.
e |t takes in the hidden state from f,, . to generate Y

e Can use autoregressive language model

Sequence to Sequence Model

The sequence-to-sequence model

Target sentence (output)

Encoding of the source sentence. Ve A \
Provides initial hidden state)))
for Decoder RNN. he hit me with a pie <END>
\\\ E[£ §| E‘ 8‘ E‘ E\
pa 0 50 50 00 00 0o 00 O
= @© © © @© @© @© ©)
= o o) 0 o) 0 o) 0 O o) o) o) 3
o @ (O e[| |O® JOL = 10| = |0 - JOf - (O] = [O] : O o
N o) e |© | |0 o o 10 O o |0 @) @®
o (] (] [[o) (o) (@) 0] (0] 0] @) -
Q
: ‘ ‘ | | [1 I ‘ ‘ [1 -
b =
il a m’ entarté <START> he hit me with a pie
N J
Y

Source sentence (input)

Decoder RNN is a Language Model that generates
target sentence, conditioned on encoding.

Encoder RNN produces
an encoding of the
source sentence.

Training Sequence to Sequence Model

e Collect a huge paired dataset and train it end-to-end via BPTT
e Loss induced by MLE P(Y' | X) = P(Y | £,,,.(X))

= negative log = negative log = negative log
prob of “he” prob of “with” prob of <END>

i+ J2 + 13 HJal+ Js + J6 + J7

11111

A~

Vo V3 Va Vs Ve V7

o~
||M-]
[y
\
o~
I

<
=

AN N

Encoder RNN
f_H
H_/

NNY 42p023(Q

il a m’ entarté <START> he hit me with a pie
\ J N J
Y Y
Source sentence (from corpus) Target sentence (from corpus)

Seqg2seq is optimized as a single system. Backpropagation operates “end-to-end”.

Deep Sequence to Sequence Model

e Stacked seq2seq model

Translation
generated
r
Encoder:
Builds up Decoder
sentence
meaning
\.
Source Feeding in
last word

sentence

Machine Translation

e 2016: Google switched Google Translate from SMT to NMT

45

40

35

30

25

20

15

10

W Phrase-based SMT

B Syntax-based SMT

W Neural MT

2013

2014

2015

2016

—— —

2017

2018

2019

Alighment

e Alignment: the word-level correspondence between X and Y
e Can have complex long-term dependencies

Morgen| | fliege | |ich nach Kanada| |zur Konferenz

/ .

Tomorrow| | I| |will fly to the conference| |in Canada
5883
The Les The
pOO,I' pauvres poor
don't sont o
have démunis don' t
any have

money any

money

Issue in Seq2Seq

e Alignment: the word-level correspondence between X and Y
e The information bottleneck due to the hidden state &
e We want each Y, to also focus on some X; that it is aligned with

Encoding of the
source sentence.

This needs to capture all Target sentence (output)
information about the e A N\
source sentence. he hit me with a pie <END>
Information bottleneck!

Encoder RNN
T
0000
o000

7

entarté <START> he hit me with a pie

\ J
Y

Source sentence (input)

NNY 49p023Q

Seq2Seq with Attention

e NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, ’15)
e Core idea:

e When decoding Y,, consider both hidden states and alignment:
e Hidden state: i, = f,,.(Y,,)
e Alignment: connect to a portion of X

e When portion of X to focus on?
e Learn a softmax weight over X: attention distribution P _,,
e P .(X:|h,): how much attention to put on word X;
, Attention output /1, = Zfenc(Xi|Xj<i) -P_(X:|h,_,)

l
e Use /i,_; and K, to compute Y,

Seq2Seq with Attention

dot product

Attention
scores

o O) o) o
= 0 o (o |0 J| o
o< e[“|® o |® ’lo
S e °® o) o
il a m’ entarté <START>
1\)
Y

Source sentence (input)

NNY Japodag

Seq2Seq with Attention

dot product

Attention
scores

Encoder
RNN

il a m’ entarté <START>
¢ J

Source sentence (input)

NNY 42p022(J

Seq2Seq with Attention

dot product

Attention
scores

o e o}) o o
B2 o .[o] Jof .|o S|
o= e |® e |® ’lo
S5 o o) o 0
il a m’ entarté <START>
4 Y,
Y

Source sentence (input)

NNY Japoaaq

Seq2Seq with Attention

dot product

Attention
scores

\ 4

0000

A4

—> 0000

Encoder
NN

—> 0000

(<)
(<)
(<)
()
m’ entarté <START>

\ J
Y

Source sentence (input)

Q —> 0000

-
—

NNY 12p023Q

Seq2Seq with Attention

Attention

Attention

Encoder

distribution

scores

RNN

On this decoder timestep, we’re

mostly focusing on the first
{ / encoder hidden state (”he”)

Take softmax to turn the scores
_ . ape . . .
into a probability distribution
o o (] o (0]
(]) (] | @ JO
(] 10 (] 10 10
]) (] (] (0]
il a m’ entarté <START>
N\ J
Y

Source sentence (input)

NNY Japodag

Seq2Seq with Attention

Attention
distribution

Attention

Encoder

scores

RNN

Attention
output

P
<

Use the attention distribution to take a
weighted sum of the encoder hidden

states.

The attention output mostly contains
information from the hidden states that
received high attention.

|

Q —> 0000

entarté

J

Y
Source sentence (input)

<START>

NNY 42p029(

Seq2Seq with Attention

Attention he
output

S
P
.
.
o
o
.
.
‘‘‘‘‘
i
.
o
.
o

Attention
distribution
—

Attention
scores

\ 4

—> 0000

Y

Q —> 0000

Encoder
RNN
\/
0000

—> 0000

|

\ J
Y

Source sentence (input)

——

Concatenate attention output
with decoder hidden state, then
use to compute ¥4 as before

entarte <START>

NNY Japodag

Seq2Seq with Attention

Attention

Decoder RNN
—

Y2
A

0000

0000

| — FY Y Y) —
N

F—— i Y Y Y) —

. v
.t
o, ‘.
", .,
. e
o,
.
)
s,
..

3

1l 0000 | —

uoiNQLISIp S3102S NNY
uoIUSY UOIUANY Japodul

<START> he

entarté

ml

il

Y

Source sentence (input)

Seq2Seq with Attention

me

Attention

!
Y3
7\

output

Decoder RNN
—

uonnqLsIp
uo1UANY

{

S2J02S
uoIUINY

~
7|

{

NNY
19poouy

0000 |[c——

0000 [e——

0000 [e———

0000 <—

0000 <—

0000 |<—

0000 |<—

hit

<START> he

entarté

ml

il

Y

Source sentence (input)

Seq2Seq with Attention

with

Attention

Decoder RNN
—M

uollnqliasIp
UOIIUBNY

fll(ll\

S2.J02S
uonuUAY

0000 |c-——

0000 |c—

0000 |[&——

0000 |[c———

0000 |<—

~
7|

0000 <—

0000 |<—

0000 |<—

fIIJ\II\

NNY
Japodu]

me

hit

<START> he

entarté

ml

il

e

Source sentence (input)

Seq2Seq with Attention

pie

C
0
-
c
Q
+—
-
<<

Decoder RNN
}

Ve
N

~
—

0000 [¢——

0000 |c—

0000 [¢——

0000

~
r

0000 [e—

0000 [e——

0000 [<—

0000 <—

e
",
“fle
[~

)

0000 <—

~
” |

{

uonINQLIASIp
uouaNY

N

{

Sa2J02S
uonuUANY

0000 |<—

{

NNY
13poou]

a

me with

hit

<START> he

entarté

ml

il

Y

Source sentence (input)

Seq2Seq with Attention

Summary
e Input sequence X, encoder f,, ., and decoder f,,.
® fone(X) produces hidden states h;", h;", ..., hy'
e On time step 7, we have decoder hidden state A,
e Compute attention score ¢; = h,' h*"
e Compute attention distribution a; = P,,(X;) = softmax(e;)
, Attention output: h;" = 2 a;h;"
i

Y, ~ g(h, hyy5 0)

e Sample an output using both 4, and h5;¢

Attention

e |t significantly improves NMT.
e |t solves the bottleneck problem and the long-term dependency issue.

e Also helps gradient vanishing problem. 2z 2% .8
e Provides some interpretability “‘
e Understanding which word the RNN encoder focuses on @

e Attention is a general technique entarte :E-

e Given a set of vector values V; and vector query ¢
e Attention computes a weighted sum of values depending on ¢

Other use cases:

e Attention can be viewed as a module.

* In encoder and decoder (more on this later)

e A representation of a set of points
e Pointer network (Vinyals, Forunato, Jaitly '15)
e Deep Sets (Zaheer et al., ’17)

e Convolutional neural networks

e To include non-local information in CNN (Non-local network, '18)

Attention

e Representation learning:
e A method to obtain a fixed representation corresponding to a query g from
an arbitrary set of representations { V;}
e Attention distribution: a; = softmax(f(v;, q))
, Attention output: v, = Z a;v;

e Attent variant: f(v;, q)
e Multiplicative attention: f(v;, q) = qTWhl-, W is a weight matrix
e Additive attention: f(v;, q) = uTtanh(lel- + W,q)

Key-query-value attention

e Obtain g, v,, k, from X,
o q, = WiX;v, = W'X; k, = W*X (position encoding omitted)
o W9, W”, WK are learnable weight matrices
s Ui = sof'tmax(ql.Tkj); out; = Z a; V;
k

e Intuition: key, query, and value can focus on different parts of input

All pairs of
attention scores!

X0 = XQKTXT
KT XT E RTXT

P

softmax| xQkTxT | xy =
output € R7*4

Attention is all you need (Vsawani '17)

e A pure attention-based architecture for sequence modeling
e No RNN at all!

The

didn'’t

e Basic component: self-attention, ¥ = f¢,(X; 0) cross
e X, uses attention on entire X sequence e
e Y, computed from X, and the attention output s
e Computing ¥, e
e Key k,, value v, query g, from X, |
* (kv q) = 81(X;0) F F F
e Attention distribution @, ; = softmax(g,'k;) seliattention

. ki v vi ky g2 v, k3 q3 s
Attention output out, = Z ay Vi \+/
J

self-attention

* Y, = gy(out;0)

kl'\E;'vl ky a2 v, k3 q3 v3
W1 wy w3

The chef who

The
animal
didn’t
cross
the
street
because

was
too
tired

Issues of Vanilla Self-Attention

e Attention is order-invariant

e Lack of non-linearities
e All the weights are simple weighted average

e Capability of autoregressive modeling
e In generation tasks, the model cannot “look at the future’
e e.g. Text generation:
e Y, canonly depend on X, _,
e But vanilla self-attention requires the entire sequence

)

Position Encoding

¢ Vanilla self-attention

¢ (kp Vta %) — gl(Xta 6)
;= softmax(g,’ k;)

, Attention output out, = Z A iV

J
e |dea: position encoding:

e p;: an embedding vector (feature) of position i
¢ (kp Vt, %) — 81([prt]§ 9)

e In practice: Additive is sufficient: k, < l~<Z +pnq, <~ q,+p,Vv, <V, +p,;
(kp ‘71‘9 Qt) — gl(Xp 8)

* p,is only included in the first layer

Position Encoding

p, design 1: Sinusoidal position representation
® Pros:

e simple

e naturally models “relative position”

e Easily applied to long sequences
e Cons:

e Not learnable

e Generalization poorly to sequences longer than training data

EY «
Position

Heatmap of plij

(sin(i/100002°1/4) | (Y Z
cos(i/100002*1/4) I
pi = . 3
° 4 g
sin(i/100002*§l/d)
GOS(i/lOOOOZ*E/dL Index in the sequence

Position Encoding

p, design 2: Learned representation
e Assume maximum length L, learn a matrixp € RXT p;is acolumn of p
¢ Pros:
e Flexible
e Learnable and more powerful
e Cons:
e Need to assume a fixed maximum length L

e Does not work at all for length above L

Combine Self-Attention with Nonlinearity

e Vanilla self-attention
* No element-wise activation (e.g., RelLU, tanh)
e Only weighted average and softmax operator

e Fix:
e Add an MLP to process out;
e m; = MLP(out;) = W,ReLU(W,out; + b)) + b,
e Usually do not put activation layer before softmaax

. . S

FF FF FF FF
! ! ! !

self-attention

A .

FF FF FF FF
1 i | i
self-attention
. . l (N} l
Wy wy w3 wr

The chef who food

Masked Attention

e In language model decoder: P(Y;| X._,)

e out, cannot look at future X,

* Masked attention
« Compute ¢; ; = ql.Tkj as usuall

e Mask out e, ; by setting ¢;,; = — o0
ceO(l—-M)« —x
e M is a fixed 0/1 mask matrix S '
e Then compute a; = softmax(e;) C . .
e Remarks: /Y
e M = 1 for full self-attention

e Set M for arbitrary dependency ordering

raw attention weights mask

Ur Y2z Ys Y+ Us Y

Transformer

Transformer-based sequence-to-sequence modeling

[predictions!]
t
Transformer

Decoder

[decoder attends t
to encoder states] °

Transformer
Decoder

-‘—

+
[input sequence] [output sequence]

Key-query-value attention

e Obtain g, v,, k, from X,
o q, = WiX;v, = W'X; k, = W*X (position encoding omitted)
o W9, W”, WK are learnable weight matrices
s Ui = sof'tmax(ql.Tkj); out; = Z a; V;
k

e Intuition: key, query, and value can focus on different parts of input

All pairs of
attention scores!

X0 = XQKTXT
KT XT E RTXT

P

softmax| xQkTxT | xy =
output € R7*4

Multi-headed attention

e Standard attention: single-headed attention
e X. € RY Q,K,V e R
e We only look at a single position j with
high a; ;
e What if we want to look at different j for
different reasons?
e |dea: define /& separate attention heads

e /1 different attention distributions, keys,
values, and queries

e O, K,V e R™iifor1 < £ < h
£ _ ONTLEN il — ¢t
L= softmax((q;) k]);out; = 2 a; Vi

J

#Params Unchanged!

Single-head attention
(just the query matrix)

X XQ
Q:

Multi-head attention
(just two heads here)

X XQ; XQ,
Q102 =

Multi-headed attention

e Standard attention: single-headed attention
e X. € RY Q,K,V e R
e We only look at a single position j with
high a; ;
e What if we want to look at different j for
different reasons?
e |dea: define /& separate attention heads

e /1 different attention distributions, keys,
values, and queries

e O, K,V e R™iifor1 < £ < h

£ _ ONTLEN il — i
L= softmax((q;) k]);out; = 2 a; Vi

J

Utterance Level Representation

c= EEENGH < |

Attention 3

Wiz Wiz3z Wiz Waz Ws3z Wes W3

Attention 2

Wiz Wiz Wiy Wiy Wsp; W, W2
,—r' ﬁl\\\ Attention 1
m-m I O -
Wi1 Wa1 W3p Wy Wsqg Weg Wn1
hys Head 3
hy, Head 2
hyq Head 1

h1 h2 h3 h4 h5 h6 hN
\

' Sequence of Encoded Representations or Hidden States

Transformer

Transformer-based sequence-to-sequence model

e Basic building blocks: self-attention
e Position encoding
e Post-processing MLP
e Attention mask

e Enhancements:
e Key-query-value attention
e Multi-headed attention
e Architecture modifications:
e Residual connection
e Layer normalization

Output
Probabilities
~
(| Add & Norm
Feed
Forward
4 1 ~\ | Add & Norm ﬁ
SEE & LEAT Multi-Head
Feed Attention
Forward I) Nx
| S—
Nix Add & Norm
f-" Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At 1t
o J —
Positional D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Transformer

Machine translation with transformer

BLEU Training Cost (FLOPs)

Model

EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 - 10%°
GNMT + RL [38] 24.6 39.92 2.3-10" 1.4-.10%
ConvS2S [9] 25.16 40.46 9.6-10"® 1.5.10%
MoE [32] 26.03 40.56 2.0-101° 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 10%°
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 7.7-101° 1.2-.10%
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.8 2.3.10"

Transformer

e Limitations of transformer: Quadratic computation cost
e Linear for RNNs

e Large cost for large sequence length, e.g., L > 10*

e Follow-ups:
e Large-scale training: transformer-XL; XL-net (‘20)
e Projection tricks to O(L): Linformer ('20)
e Math tricks to O(L): Performer (‘20)
e Sparse interactions: Big Bird (‘20)
e Deeper transformers: DeepNet ('22)

Transformer for Images

e Vision Transformer ('21)
e Decompose an image to 16x16 patches and then apply transformer encoder

Transformer Encoder

A
@._
MLP

\

Vision Transformer (ViT)

MLP
Head

T

Norm

Transformer Encoder

1

I

I

I

I

I

I ‘ -
I

%MW»W@ﬁﬁ@ﬁ@ﬁﬁé ! " Atontion.

I

I

1 .

I

I

1

* Extra learnable
| <

[class] embedding Linear Projection of Flattened Patches
Norm

. . . i J
; oy
/..‘ e
A) | -

ﬂﬁl—*ﬂ..m
A e

Embedded
Patches

Transformer for Images

e Swin Transformer ('21)

e Build hierachical feature maps at different resolution
e Self-attention only within each block
e Shifted block partitions to encode information between blocks

Layer | Layer 1+1
Bl g o
A local window to
perform self-attention
[]
ol s _ M R A patch

segmentation -
classification detection ... clasm?catlon
0 A

Ly - o ,47/ 71 -

LT T

S A
L ety (i Sy 4% | 16x

Wz of S
L s P

(a) Swin Transformer (ours)

(b) ViT

Figure 2. An illustration of the shifted window approach for com-

CNN vs. RNN vs. Attention

Convolution Recurrence Self-Attention

7T = % & &4 " F 1T -2 " a3 F

The cat sat on the mat The cat sat on the mat The cat sat on the mat

Summary

e Language model & sequence to sequence model:
e Fundamental ideas and methods for sequence modeling

e Attention mechanism
e So far the most successful idea for sequence data in deep learning
e A scale/order-invariant representation
e Transformer: a fully attention-based architecture for sequence data
e Transformer + Pretraining: the core idea in today’s NLP tasks

e LSTM is still useful in lightweight scenarios

Other architectures

Graph Neural Networks

Adjacency Feature
matrix nxXn matrix nxd

X
Adjacency Feature
matrix nXn matrix nxd T
PAPT PX

arbitrary ordering of nodes

Graph Neural Networks

Geometric Deep Learning

32

Perceptrons
Function regularity

DeepSets / Transformers
Permutation

(32
—
32
6

CNNs

Translation

e

GNNs

Permutation

i 0

Group-CNNs

Translation+Rotation

Intrinsic CNNs
Local frame choice

