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Machine Translation

e Before 2014: Statistical Machine Translation (SMT)
e Extremely complex systems that require massive human efforts
e Separately designhed components
e A lot of feature engineering
e Lots of linguistic domain knowledge and expertise

e Before 2016:
e Google Translate is based on statistical machine learning

e What happened in 20147
e Neural machine translation (NMT)



Sequence to Sequence Model

e Neural Machine Translation (NMT)
e Learning to translate via a single end-to-end neural network.

 Source language sentence X, target language sentence Y = f(X; 0)

e Sequence to Sequence Model (Seq2Seq, Sutskever et al. , ‘14)
e Two RNNs: f,,.and f,,.

e Encoderf,, .

e Takes X as input, and output the initial hidden state for decoder

e Can use bidirectional RNN
e Decoder f,,.
e |t takes in the hidden state from f,, . to generate Y

e Can use autoregressive language model



Sequence to Sequence Model

The sequence-to-sequence model
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Training Sequence to Sequence Model

e Collect a huge paired dataset and train it end-to-end via BPTT
e Loss induced by MLE P(Y' | X) = P(Y | £,,,.(X))
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Seqg2seq is optimized as a single system. Backpropagation operates “end-to-end”.




Deep Sequence to Sequence Model

e Stacked seq2seq model
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Machine Translation

e 2016: Google switched Google Translate from SMT to NMT
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Alighment

e Alignment: the word-level correspondence between X and Y
e Can have complex long-term dependencies
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Issue in Seq2Seq

e Alignment: the word-level correspondence between X and Y
e The information bottleneck due to the hidden state &
e We want each Y, to also focus on some X; that it is aligned with

Encoding of the
source sentence.

This needs to capture all Target sentence (output)
information about the e A N\
source sentence. he hit me  with a pie <END>
Information bottleneck!
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Seq2Seq with Attention

e NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, ’15)
e Core idea:

e When decoding Y,, consider both hidden states and alignment:
e Hidden state: i, = f,,.(Y,,)
e Alignment: connect to a portion of X

e When portion of X to focus on?
e Learn a softmax weight over X: attention distribution P _,,
e P .(X:|h,): how much attention to put on word X;
, Attention output /1, = Zfenc(Xi|Xj<i) -P_(X:|h,_,)

l
e Use /i,_; and K, to compute Y,



Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention
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Seq2Seq with Attention

Summary
e Input sequence X, encoder f,, ., and decoder f,,.
® fone(X) produces hidden states h;", h;", ..., hy'
e On time step 7, we have decoder hidden state A,
e Compute attention score ¢; = h,' h*"
e Compute attention distribution a; = P,,(X;) = softmax(e;)
, Attention output: h;" = 2 a;h;"
i

Y, ~ g(h, hyy5 0)

e Sample an output using both 4, and h5;¢



Attention

e |t significantly improves NMT.
e |t solves the bottleneck problem and the long-term dependency issue.

e Also helps gradient vanishing problem. 2z 2% .8
e Provides some interpretability “‘
e Understanding which word the RNN encoder focuses on @

e Attention is a general technique entarte :E-

e Given a set of vector values V; and vector query ¢
e Attention computes a weighted sum of values depending on ¢

Other use cases:

e Attention can be viewed as a module.

* In encoder and decoder (more on this later)

e A representation of a set of points
e Pointer network (Vinyals, Forunato, Jaitly '15)
e Deep Sets (Zaheer et al., ’17)

e Convolutional neural networks

e To include non-local information in CNN (Non-local network, '18)



Attention

e Representation learning:
e A method to obtain a fixed representation corresponding to a query g from
an arbitrary set of representations { V;}
e Attention distribution: a; = softmax(f(v;, q))
, Attention output: v, = Z a;v;

e Attent variant: f(v;, q)
e Multiplicative attention: f(v;, q) = qTWhl-, W is a weight matrix
e Additive attention: f(v;, q) = uTtanh(lel- + W,q)



Key-query-value attention

e Obtain g, v,, k, from X,
o q, = WiX;v, = W'X; k, = W*X (position encoding omitted)
o W9, W”, WK are learnable weight matrices
s Ui = sof'tmax(ql.Tkj); out; = Z a; V;
k

e Intuition: key, query, and value can focus on different parts of input

All pairs of
attention scores!

X0 = XQKTXT
KT XT E RTXT

P

softmax| xQkTxT | xy =
output € R7*4



Attention is all you need (Vsawani '17)

e A pure attention-based architecture for sequence modeling
e No RNN at all!

The

didn'’t

e Basic component: self-attention, ¥ = f¢,(X; 0) cross
e X, uses attention on entire X sequence e
e Y, computed from X, and the attention output s
e Computing ¥, e
e Key k,, value v, query g, from X, |
* (kv q) = 81(X;0) F F F
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Issues of Vanilla Self-Attention

e Attention is order-invariant

e Lack of non-linearities
e All the weights are simple weighted average

e Capability of autoregressive modeling
e In generation tasks, the model cannot “look at the future’
e e.g. Text generation:
e Y, canonly depend on X, _,
e But vanilla self-attention requires the entire sequence

)



Position Encoding

¢ Vanilla self-attention

¢ (kp Vta %) — gl(Xta 6)
;= softmax(g,’ k;)

, Attention output out, = Z A iV

J
e |dea: position encoding:

e p;: an embedding vector (feature) of position i
¢ (kp Vt, %) — 81([prt]§ 9)

e In practice: Additive is sufficient: k, < l~<Z +pnq, <~ q,+p,Vv, <V, +p,;
(kp ‘71‘9 Qt) — gl(Xp 8)

* p,is only included in the first layer



Position Encoding

p, design 1: Sinusoidal position representation
® Pros:

e simple

e naturally models “relative position”

e Easily applied to long sequences
e Cons:

e Not learnable

e Generalization poorly to sequences longer than training data

EY «
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Position Encoding

p, design 2: Learned representation
e Assume maximum length L, learn a matrixp € RXT p;is acolumn of p
¢ Pros:
e Flexible
e Learnable and more powerful
e Cons:
e Need to assume a fixed maximum length L

e Does not work at all for length above L



Combine Self-Attention with Nonlinearity

e Vanilla self-attention
* No element-wise activation (e.g., RelLU, tanh)
e Only weighted average and softmax operator

e Fix:
e Add an MLP to process out;
e m; = MLP(out;) = W,ReLU(W,out; + b)) + b,
e Usually do not put activation layer before softmaax
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Masked Attention

e In language model decoder: P(Y;| X._,)

e out, cannot look at future X,

* Masked attention
« Compute ¢; ; = ql.Tkj as usuall

e Mask out e, ; by setting ¢;,; = — o0
ceO(l—-M)« —x
e M is a fixed 0/1 mask matrix S '
e Then compute a; = softmax(e;) C . .
e Remarks: /Y
e M = 1 for full self-attention

e Set M for arbitrary dependency ordering

raw attention weights mask

Ur Y2z Ys Y+ Us Y




Transformer

Transformer-based sequence-to-sequence modeling
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Key-query-value attention

e Obtain g, v,, k, from X,
o q, = WiX;v, = W'X; k, = W*X (position encoding omitted)
o W9, W”, WK are learnable weight matrices
s Ui = sof'tmax(ql.Tkj); out; = Z a; V;
k

e Intuition: key, query, and value can focus on different parts of input

All pairs of
attention scores!

X0 = XQKTXT
KT XT E RTXT

P

softmax| xQkTxT | xy =
output € R7*4



Multi-headed attention

e Standard attention: single-headed attention
e X. € RY Q,K,V e R
e We only look at a single position j with
high a; ;
e What if we want to look at different j for
different reasons?
e |dea: define /& separate attention heads

e /1 different attention distributions, keys,
values, and queries

e O, K,V e R™iifor1 < £ < h
£ _ ONTLEN il — ¢t
L= softmax((q; ) k] );out; = 2 a; Vi

J

#Params Unchanged!

Single-head attention
(just the query matrix)

X XQ
Q:

Multi-head attention
(just two heads here)

X XQ; XQ,
Q102 =




Multi-headed attention

e Standard attention: single-headed attention
e X. € RY Q,K,V e R
e We only look at a single position j with
high a; ;
e What if we want to look at different j for
different reasons?
e |dea: define /& separate attention heads

e /1 different attention distributions, keys,
values, and queries

e O, K,V e R™iifor1 < £ < h

£ _ ONTLEN il — i
L= softmax((q; ) k] );out; = 2 a; Vi
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Transformer

Transformer-based sequence-to-sequence model

e Basic building blocks: self-attention
e Position encoding
e Post-processing MLP
e Attention mask

e Enhancements:
e Key-query-value attention
e Multi-headed attention
e Architecture modifications:
e Residual connection
e Layer normalization

Output
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(| Add & Norm
Feed
Forward
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At 1t
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Positional D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)



Transformer

Machine translation with transformer

BLEU Training Cost (FLOPs)

Model

EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 - 10%°
GNMT + RL [38] 24.6 39.92 2.3-10" 1.4-.10%
ConvS2S [9] 25.16  40.46 9.6-10"® 1.5.10%
MoE [32] 26.03  40.56 2.0-101° 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 10%°
GNMT + RL Ensemble [38] 26.30  41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 7.7-101°  1.2-.10%
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.8 2.3.10"




Transformer

e Limitations of transformer: Quadratic computation cost
e Linear for RNNs

e Large cost for large sequence length, e.g., L > 10*

e Follow-ups:
e Large-scale training: transformer-XL; XL-net (‘20)
e Projection tricks to O(L): Linformer ('20)
e Math tricks to O(L): Performer (‘20)
e Sparse interactions: Big Bird (‘20)
e Deeper transformers: DeepNet ('22)



Transformer for Images

e Vision Transformer ('21)
e Decompose an image to 16x16 patches and then apply transformer encoder
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Transformer for Images

e Swin Transformer ('21)

e Build hierachical feature maps at different resolution
e Self-attention only within each block
e Shifted block partitions to encode information between blocks
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(a) Swin Transformer (ours)
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Figure 2. An illustration of the shifted window approach for com-



CNN vs. RNN vs. Attention

Convolution Recurrence Self-Attention

7T = % & &4 " F 1T -2 " a3 F

The cat sat on the mat The cat sat on the mat The cat sat on the mat




Summary

e Language model & sequence to sequence model:
e Fundamental ideas and methods for sequence modeling

e Attention mechanism
e So far the most successful idea for sequence data in deep learning
e A scale/order-invariant representation
e Transformer: a fully attention-based architecture for sequence data
e Transformer + Pretraining: the core idea in today’s NLP tasks

e LSTM is still useful in lightweight scenarios



Other architectures




Graph Neural Networks

Adjacency Feature
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Graph Neural Networks




Geometric Deep Learning
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