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Distribution learning

BigGAN, Brock et al ‘18



Distribution learning

Conditional generative model P(zebra images| horse images)

Style Transfer
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Distribution learning

Source Real-time Reenactmen
actor

Real-time
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Generative model

Generate

Generative model
of realistic images

Stroke paintings to realistic images
[Meng, He, Song, et al., ICLR 2022]
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of paintings Language-guided artwork creation
https://chainbreakers.kath.io @RiversHaveWings

Slides credit to Yang Song
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Generative model
of traffic signs

Outlier detection
[Song et al., ICLR 2018]
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Desiderata for generative models

e Probability evaluation: given a sample, it is computationally efficient to evaluate
the probability of this sample.

K, /3@ , /7@ ( £) Qﬁ/‘f!’/@ﬂf

¢ Flexible model family: it is easy to incorporate any neural network models.
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e Easy sampling: it is computationally efficient to sample a data from the
probabilistic model.



Desiderata for generative models

Data distribution
(unknown)
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Taxonomy of generative models
P (x)
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models:
- (Nonlinear) ICA
- Normalizing flows
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Key challenge for building generative models
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Key challenge for building generative models

Inaccurate probability
evaluation
Using restricted neural network models
. Autoregressive models [Bengio & Bengio 2000, van e
den Oord et al. 2016] fam”y
* Normalizing flow models [pinh et al. 2014,

Rezende & Mohamed 2015]

Approximating the normalizing constant

e Variational auto-encoders [kingma & Welling 2014,
Rezende et al. 2014]

* Energy-based models [Ackiey et al. 1985, LeCun et
al. 2006]

« Model the generation process, not the Cannot evaluate

Generative adversarial networks (GANSs) 6
probability distribution [coodtellow et al. 2012]

probabilities

Slide credit to Yang Song



Training generative models

e Likelihood-based: maximize the likelihood of the data under the model (possibly
using advanced techniques such as variational method or MCMC):

max ) log py(x)
i=1

® Pros:
e Easy training: can just maximize via SGD.
e Evaluation: evaluating the fit of the model can be done by evaluating the
likelihood (on test data).

e Cons:
e Large models needed: likelihood objectve is hard, to fit well need very big
model.
¢ Likelihood entourages averaging: produced samples tend to be blurrier, as
likelihood encourages “coverage” of training data.



Training generative models

e Likelihood-free: use a surrogate loss (e.g., GAN) to train a discriminator to
differentiate real and generated samples.

® Pros:
e Better objective, smaller models needed: objective itself is learned - can
result in visually better images with smaller models.

e Cons:
e Unstable training: typically min-max (saddle point) problems.
e Evaluation: no way to evaluate the quality of fit.
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Implicit Generative Model

e Goal: a sampler g( - ) to generate images

e A simple generator g(z; 0): @ 734/?’0»—-5[4%%0" D\eseag
ez~ N(,I) &) ZutwvoA /)W%éd/ﬂ‘] Metvi(
* ¥ = 8(z; 0) deterministic transformation (Zth)

e Likelihood-free training:
* Given a dataset from some distribution p, .,
e Goal: g(z; 0) defines a distribution, we want this distribution ~ p, ..
e Training: minimize D(g(z;0), Py.10)
e D is some distance metric (not likelihood)
e Key idea: Learn a differentiable D



GAN (Goodfellow et al., ‘14)

e Parameterize the discriminator D( - ; ¢) with parameter ¢

e Goal: learn ¢ such that D(x; ¢) measures how likely x is from p,_..

¢ D()C, ¢) = lifx ~ Pdata

e D(x, ) =0ifx! ~p,..,
e a.k.a., a binary classifier

e GAN: use a neural network for D( - ; ¢) Yi,,} ). )a/

G/On“p[

e Training: need both negative and positive samples
e Positive samples: just the training data

e Negative samples: use our sampler g(z; @) (can provide infinite samples).

e Overall objectives:
o Generator: % = max D(g(z;0); ¢)
0

e Discriminator uses MLE Training:
*=maxE, , [logD(x;¢)]+ Eq 0, [log(l — D(; ¢))]
¢



GAN (Goodfellow et al., ‘14)

e Generator g(z; 0) where z ~ N(0,)
e Generate realistic data

e Discriminator D(x; ¢)
e Classify whether the data is real (from p, ..) or fake (from g)

e Objective function:
L(O.¢) = minmaxE,, log D(x; @) + Ey(.) [log(1 — D(; 9))]

0
e —_
e Training procedure: /-»7/%@,/(\
« Collectdataset { QA2 ~ Py} U {GE0) ~ g(z:6))
e Train discriminator
D:L(@) =E,., [logD;¢)|+ Ezpeo [log(l — DG; )]
e Train generator g : L(0) = E, no.n [log D(g(z; 0), ¢)]
e Repeat



GAN (Goodfellow et al., ‘14)

e Objective function:
L(9,¢) = minmax E,_, [log D(x;¢)| + E;. g [log(1 — D(%; $))
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