generate data

Generative Models

AIGCIAI Generated Contents

. Leann of differentiation and doing Distribution learning. Souple from distribution

Training Data(CelebA)

Model Samples (Karras et.al., 2018)

4 years of progression on Faces

Brundage et al., 2017

Image credits to Andrej Risteski

Distribution learning

BigGAN, Brock et al '18

Distribution learning

Conditional generative model P(zebra images | horse images)

Style Transfer

Input Image

Monet

Van Gogh

Image credits to Andrej Risteski

Distribution learning

Source actor

Real-time Reenactment

Reenactment Result

Real-time reenactment

Target actor

Generative model

Slides credit to Yang Song

Generative model

 $\mathcal{P}_{G}(\chi)$ lange

Generative model of traffic signs

Outlier detection

[Song et al., ICLR 2018]

Slide credit to Yang Song

Desiderata for generative models

• **Probability evaluation**: given a sample, it is computationally efficient to evaluate the probability of this sample.

• Flexible model family: it is easy to incorporate any neural network models.

• **Easy sampling:** it is computationally efficient to sample a data from the probabilistic model.

Desiderata for generative models

Slide credit to Yang Song

Taxonomy of generative models

 $P_{A}(X)$

- Normalizing flows

Image credits to Andrej Risteski

Key challenge for building generative models

distribution $\int_{x} P_{\theta}(x) = \int_{x} P_{\theta}(x) dx = 1$

Slide credit to Yang Song

Slide credit to Yang Song

Key challenge for building generative models

Approximating the normalizing constant

- Variational auto-encoders [Kingma & Welling 2014, Rezende et al. 2014]
- Energy-based models [Ackley et al. 1985, LeCun et al. 2006]

Using restricted neural network models

- Autoregressive models [Bengio & Bengio 2000, van den Oord et al. 2016]
- Normalizing flow models [Dinh et al. 2014, Rezende & Mohamed 2015]

Generative adversarial networks (GANs)

• Model the generation process, not the probability distribution [Goodfellow et al. 2014]

Training generative models

• Likelihood-based: maximize the likelihood of the data under the model (possibly using advanced techniques such as variational method or MCMC):

$$\max_{\theta} \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

- Pros:
 - Easy training: can just maximize via SGD.
 - **Evaluation**: evaluating the fit of the model can be done by evaluating the likelihood (on test data).
- Cons:
 - Large models needed: likelihood objectve is hard, to fit well need very big model.
 - Likelihood entourages averaging: produced samples tend to be blurrier, as likelihood encourages "coverage" of training data.

Training generative models

- Likelihood-free: use a surrogate loss (e.g., GAN) to train a discriminator to differentiate real and generated samples.
- Pros:
 - Better objective, smaller models needed: objective itself is learned can result in visually better images with smaller models.
- Cons:
 - Unstable training: typically min-max (saddle point) problems.
 - Evaluation: no way to evaluate the quality of fit.

Generative Adversarial Nets

Implicit Generative Model

- Goal: a sampler $g(\cdot)$ to generate images
- A simple generator $g(z; \theta)$:
 - $z \sim N(0,I)$
 - $x = g(z; \theta)$ deterministic transformation
- Likelihood-free training:
 - Given a dataset from some distribution p_{data}
 - Goal: $g(z; \theta)$ defines a distribution, we want this distribution $\approx p_{data}$
 - Training: minimize $D(g(z; \theta), p_{data})$
 - D is some distance metric (not likelihood)
 - Key idea: *Learn* a differentiable D

(4) Kull hack-Leihler Undegene (KL) (2) Total Univication (3) Unssenstein Listang (4) Jensen-Shannon Divageng (5) Integral Publishellery Metrif (7) [M]

GAN (Goodfellow et al., '14)

- Parameterize the discriminator $D(\ \cdot\ ;\phi)$ with parameter ϕ
- Goal: learn ϕ such that $D(x; \phi)$ measures how likely x is from p_{data}
 - $D(x, \phi) = 1$ if $x \sim p_{data}$
 - $D(x, \phi) = 0$ if $x! \sim p_{data}$
 - a.k.a., a binary classifier
- GAN: use a neural network for $D(\;\cdot\;;\phi)$

{Xy - Xy} ~ ldgty

- Training: need both negative and positive samples
 - Positive samples: just the training data
 - Negative samples: use our sampler $g(z; \theta)$ (can provide infinite samples).
- Overall objectives:
 - Generator: $\theta^* = \max_{\alpha} D(g(z; \theta); \phi)$
 - Discriminator uses MLE Training:

$$\phi^* = \max_{\phi} \mathbb{E}_{x \sim p_{data}}[\log D(x;\phi)] + \mathbb{E}_{\hat{x} \sim g(\cdot)}[\log(1 - D(\hat{x};\phi))]$$

GAN (Goodfellow et al., '14)

- Generator $g(z; \theta)$ where $z \sim N(0, I)$
 - Generate realistic data
- Discriminator $D(x; \phi)$
 - Classify whether the data is real (from p_{data}) or fake (from g)
- Objective function:

 $L(\theta, \phi) = \min \max \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim g(z, \theta)} \left[\log(1 - D(\hat{x}; \phi)) \right]$

- Training procedure:
- $\begin{array}{c} \neq \\ \hline \\ \text{raining procedure:} \\ \bullet \underline{\text{Collect-dataset}} \left\{ (\underline{x}, \underline{1}) \mid \underline{x} \sim p_{data} \right\} \cup \left\{ (\hat{x}, 0) \sim g(z; \theta) \right\} \end{array}$
 - Train discriminator

 $D: L(\phi) = \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim g(z, \theta)} \left[\log(1 - D(\hat{x}; \phi)) \right]$

- Train generator $g: L(\theta) = \mathbb{E}_{z \sim N(0|I)} \left[\log D(g(z; \theta), \phi) \right]$
- Repeat

GAN (Goodfellow et al., '14)

• Objective function:

 $L(\theta, \phi) = \min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{data}} \left[\log D(x; \phi) \right] + \mathbb{E}_{\hat{x} \sim G} \left[\log(1 - D(\hat{x}; \phi)) \right]$

