Attention Mechanism
Machine Translation

• Before 2014: Statistical Machine Translation (SMT)
 • Extremely complex systems that require massive human efforts
 • Separately designed components
 • A lot of feature engineering
 • Lots of linguistic domain knowledge and expertise

• Before 2016:
 • Google Translate is based on statistical machine learning

• What happened in 2014?
 • Neural machine translation (NMT)
Sequence to Sequence Model

- Neural Machine Translation (NMT)
 - Learning to translate via a single end-to-end neural network.
 - Source language sentence X, target language sentence $Y = f(X; \theta)$

- Sequence to Sequence Model (Seq2Seq, Sutskever et al., ’14)
 - Two RNNs: f_{enc} and f_{dec}
 - Encoder f_{enc}:
 - Takes X as input, and output the initial hidden state for decoder
 - Can use bidirectional RNN
 - Decoder f_{dec}:
 - It takes in the hidden state from f_{enc} to generate Y
 - Can use autoregressive language model
Sequence to Sequence Model

The sequence-to-sequence model

Encoding of the source sentence. Provides initial hidden state for Decoder RNN.

Source sentence (input)

Decoder RNN is a Language Model that generates target sentence, conditioned on encoding.

Note: This diagram shows test time behavior: decoder output is fed in as next step’s input.

Encoder RNN produces an encoding of the source sentence.
Training Sequence to Sequence Model

- Collect a huge paired dataset and train it end-to-end via BPTT
- Loss induced by MLE $P(Y | X) = P(Y | f_{enc}(X))$

$$ J = \frac{1}{T} \sum_{t=1}^{T} J_t = J_1 + J_2 + J_3 + J_4 + J_5 + J_6 + J_7 $$

$= \text{negative log prob of “he”}$

$= \text{negative log prob of “with”}$

$= \text{negative log prob of <END>}$

Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.
Deep Sequence to Sequence Model

- Stacked seq2seq model
Machine Translation

- 2016: Google switched Google Translate from SMT to NMT
Alignment

- Alignment: the word-level correspondence between X and Y
- Can have complex long-term dependencies
Issue in Seq2Seq

• Alignment: the word-level correspondence between X and Y
• The information bottleneck due to the hidden state h
• We want each Y_t to also focus on some X_i that it is aligned with
Seq2Seq with Attention

- NMT by jointly learning to align and translate (Bahdanau, Cho, Bengio, ’15)
- Core idea:
 - When decoding Y_t, consider both hidden states and alignment:
 - Hidden state: $h_t = f_{dec}(Y_{<t})$
 - Alignment: connect to a portion of X
 - When portion of X to focus on?
 - Learn a softmax weight over X: attention distribution P_{att}
 - $P_{att}(X_i | h_t)$: how much attention to put on word X_i
 - Attention output $h_{att} = \sum_i f_{enc}(X_i | X_{<i}) \cdot P_{att}(X_i | h_{t-1})$
 - Use h_{t-1} and h_{att} to compute Y_t
Seq2Seq with Attention

Encoder RNN

Attention scores

Decoder RNN

Source sentence (input)

dot product
Seq2Seq with Attention

Encoder RNN

Attention scores

Decoder RNN

Source sentence (input)

Source words: il, a, m', entarté

<START>
Seq2Seq with Attention

Encoder RNN

Attention scores

dot product

Decoder RNN

Source sentence (input)

il, a, m’, entarté, <START>
Seq2Seq with Attention
Seq2Seq with Attention

On this decoder timestep, we’re mostly focusing on the first encoder hidden state ("he")

Take softmax to turn the scores into a probability distribution

Source sentence (input)

<START>
Seq2Seq with Attention

Use the attention distribution to take a weighted sum of the encoder hidden states.

The attention output mostly contains information from the hidden states that received high attention.

\[
\sum_{i=1}^{n} \alpha_i \cdot h_i
\]
Seq2Seq with Attention

EncRNN \{ il, a, m', entarté \} \rightarrow \text{Decoder RNN}

Attention scores

Attention distribution

Attention output

\hat{y}_1 \rightarrow \text{Decoder hidden state}

\text{Concatenate attention output with decoder hidden state, then use to compute } \hat{y}_1 \text{ as before}
Seq2Seq with Attention
Seq2Seq with Attention

Source sentence (input):

```
il a m' entarté <START> he hit
```

Attention output:

```
me
```

Encoder RNN

Decoder RNN

Attention distribution

Attention scores
Seq2Seq with Attention
Seq2Seq with Attention
Seq2Seq with Attention

Summary

• Input sequence X, encoder f_{enc}, and decoder f_{dec}

• $f_{enc}(X)$ produces hidden states $h_{1}^{enc}, h_{2}^{enc}, \ldots, h_{N}^{enc}$

• On time step t, we have decoder hidden state h_{t}

• Compute attention score $e_{i} = h_{t}^{T} h_{i}^{enc}$

• Compute attention distribution $\alpha_{i} = P_{att}(X_{i}) = \text{softmax}(e_{i})$

• Attention output: $h_{att}^{enc} = \sum_{i} \alpha_{i} h_{i}^{enc}$

• $Y_{t} \sim g(h_{t}, h_{att}^{enc}, \theta)$
 • Sample an output using both h_{t} and h_{att}^{enc}
Attention

- It significantly improves NMT.
- It solves the bottleneck problem and the long-term dependency issue.
- Also helps gradient vanishing problem.
- Provides some interpretability
 - Understanding which word the RNN encoder focuses on

Attention is a general technique
- Given a set of vector values V_i and vector query q
- Attention computes a weighted sum of values depending on q

Other use cases:
- Attention can be viewed as a module.
- In encoder and decoder (more on this later)
- A representation of a set of points
 - Pointer network (Vinyals, Forunato, Jaitly ’15)
 - Deep Sets (Zaheer et al., ’17)
- Convolutional neural networks
 - To include non-local information in CNN (Non-local network, ’18)
Attention

- **Representation learning:**
 - A method to obtain a fixed representation corresponding to a query \(q \) from an arbitrary set of representations \(\{V_i\} \)
 - Attention distribution: \(\alpha_i = \text{softmax}(f(v_i, q)) \)
 - Attention output: \(v_{\text{att}} = \sum_i \alpha_i v_i \)

- **Attent variant:** \(f(v_i, q) \)
 - Multiplicative attention: \(f(v_i, q) = q^T W h_i \), \(W \) is a weight matrix
 - Additive attention: \(f(v_i, q) = u^T \tanh(W_1 v_i + W_2 q) \)
Key-query-value attention

• Obtain q_t, v_t, k_t from X_t

 $q_t = W^q X_t; v_t = W^v X_t; k_t = W^k X_t$ (position encoding omitted)

 - W^q, W^v, W^k are learnable weight matrices

 $\alpha_{i,j} = \text{softmax}(q_i^T k_j); \text{out}_i = \sum_k \alpha_{i,j} v_j$

• Intuition: key, query, and value can focus on different parts of input
Attention is all you need (Vaswani ’17)

- A pure attention-based architecture for sequence modeling
 - No RNN at all!
- Basic component: self-attention, \(Y = f_{SA}(X; \theta) \)
 - \(X_t \) uses attention on entire \(X \) sequence
 - \(Y_t \) computed from \(X_t \) and the attention output
- Computing \(Y_t \)
 - Key \(k_t \), value \(v_t \), query \(q_t \) from \(X_t \)
 - \((k_t, v_t, q_t) = g_1(X_t; \theta) \)
 - Attention distribution \(\alpha_{t,j} = \text{softmax}(q_t^T k_j) \)
 - Attention output \(\text{out}_t = \sum_j \alpha_{t,j} v_j \)
 - \(Y_t = g_2(\text{out}_t; \theta) \)
Issues of Vanilla Self-Attention

• Attention is order-invariant

• Lack of non-linearities
 • All the weights are simple weighted average

• Capability of autoregressive modeling
 • In generation tasks, the model cannot “look at the future”
 • e.g. Text generation:
 • Y_t can only depend on $X_{i<t}$
 • But vanilla self-attention requires the entire sequence
Position Encoding

- Vanilla self-attention
 - \((k_t, v_t, q_t) = g_1(X_t; \theta)\)
 - \(\alpha_{t,j} = \text{softmax}(q_t^T k_j)\)
 - Attention output \(out_t = \sum_j \alpha_{t,j} v_j\)

- Idea: position encoding:
 - \(p_i\): an embedding vector (feature) of position \(i\)
 - \((k_t, v_t, q_t) = g_1([X_t, p_t]; \theta)\)

- In practice: Additive is sufficient: \(k_t \leftarrow \tilde{k}_t + p_t, q_t \leftarrow \tilde{q}_t + p_t, v_t \leftarrow \tilde{v}_t + p_t; (\tilde{k}_t, \tilde{v}_t, \tilde{q}_t) = g_1(X_t; \theta)\)

- \(p_t\) is only included in the first layer
Position Encoding

\(p_i \) design 1: Sinusoidal position representation

Pros:
- simple
- naturally models “relative position”
- Easily applied to long sequences

Cons:
- Not learnable
- Generalization poorly to sequences longer than training data

\[
p_i = \begin{cases}
 \sin(i/10000^{2*1/d}) \\
 \cos(i/10000^{2*1/d}) \\
 \vdots \\
 \sin(i/10000^{2*d/2/d}) \\
 \cos(i/10000^{2*d/2/d})
\end{cases}
\]
p_t design 2: **Learned representation**

- Assume maximum length L, learn a matrix $p \in \mathbb{R}^{d \times T}$, p_t is a column of p
- **Pros:**
 - Flexible
 - Learnable and more powerful
- **Cons:**
 - Need to assume a fixed maximum length L
 - Does not work at all for length above L
Combine Self-Attention with Nonlinearity

- Vanilla self-attention
 - No element-wise activation (e.g., ReLU, tanh)
 - Only weighted average and softmax operator

- Fix:
 - Add an MLP to process out_i
 - $m_i = MLP(out_i) = W_2\text{ReLU}(W_1out_i + b_1) + b_2$
 - Usually do not put activation layer before softmax
Masked Attention

- In language model decoder: $P(Y_t|X_{i<t})$
 - o_{ut_t} cannot look at future $X_{i>t}$

- Masked attention
 - Compute $e_{i,j} = q_i^T k_j$ as usual
 - Mask out $e_{i>j}$ by setting $e_{i>j} = -\infty$
 - $e \odot (1 - M) \leftarrow -\infty$
 - M is a fixed 0/1 mask matrix
 - Then compute $\alpha_i = \text{softmax}(e_i)$
 - Remarks:
 - $M = 1$ for full self-attention
 - Set M for arbitrary dependency ordering
Transformer

Transformer-based sequence-to-sequence modeling

[Diagram showing the flow of information from input sequence to output predictions through Transformer Encoder and Decoder with Word Embeddings and Position Representations]
Key-query-value attention

- Obtain q_t, v_t, k_t from X_t
- $q_t = W^q X_t; \ v_t = W^v X_t; \ k_t = W^k X_t$ (position encoding omitted)
 - W^q, W^v, W^k are learnable weight matrices
- $\alpha_{i,j} = \text{softmax}(q_i^T k_j); \ out_i = \sum_k \alpha_{i,j} v_j$
- Intuition: key, query, and value can focus on different parts of input
Multi-headed attention

- Standard attention: single-headed attention
 - \(X_t \in \mathbb{R}^d, Q, K, V \in \mathbb{R}^{d \times d} \)
 - We only look at a single position \(j \) with high \(\alpha_{i,j} \)
 - What if we want to look at different \(j \) for different reasons?
- Idea: define \(h \) separate attention heads
 - \(h \) different attention distributions, keys, values, and queries
 - \(Q^\ell, K^\ell, V^\ell \in \mathbb{R}^{d \times \frac{d}{h}} \) for \(1 \leq \ell \leq h \)
 - \(\alpha_{i,j}^\ell = \text{softmax}((q_i^\ell)^T k_j^\ell) \); \(\text{out}_i^\ell = \sum_j \alpha_{i,j}^\ell v_j^\ell \)
Multi-headed attention

- Standard attention: single-headed attention
 - $X_t \in \mathbb{R}^d$, $Q, K, V \in \mathbb{R}^{d \times d}$
 - We only look at a single position j with high $\alpha_{i,j}$
 - What if we want to look at different j for different reasons?
- Idea: define h separate attention heads
 - h different attention distributions, keys, values, and queries
 - $Q^{\ell}, K^{\ell}, V^{\ell} \in \mathbb{R}^{d \times \frac{d}{h}}$ for $1 \leq \ell \leq h$
 - $\alpha^{\ell}_{i,j} = \text{softmax}((q_i^{\ell})^T k_j^{\ell})$; $\text{out}_i^{\ell} = \sum_j \alpha^{\ell}_{i,j} v_j^{\ell}$
Transformer

Transformer-based sequence-to-sequence model

- Basic building blocks: self-attention
 - Position encoding
 - Post-processing MLP
 - Attention mask

- Enhancements:
 - Key-query-value attention
 - Multi-headed attention
 - Architecture modifications:
 - Residual connection
 - Layer normalization
Transformer

Machine translation with transformer

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU</th>
<th>Training Cost (FLOPs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EN-DE</td>
<td>EN-FR</td>
</tr>
<tr>
<td>ByteNet [18]</td>
<td>23.75</td>
<td></td>
</tr>
<tr>
<td>Deep-Att + PosUnk [39]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNMT + RL [38]</td>
<td>24.6</td>
<td>39.92</td>
</tr>
<tr>
<td>ConvS2S [9]</td>
<td>25.16</td>
<td>40.46</td>
</tr>
<tr>
<td>MoE [32]</td>
<td>26.03</td>
<td>40.56</td>
</tr>
<tr>
<td>Deep-Att + PosUnk Ensemble [39]</td>
<td></td>
<td>40.4</td>
</tr>
<tr>
<td>GNMT + RL Ensemble [38]</td>
<td>26.30</td>
<td>41.16</td>
</tr>
<tr>
<td>ConvS2S Ensemble [9]</td>
<td>26.36</td>
<td>41.29</td>
</tr>
<tr>
<td>Transformer (base model)</td>
<td>27.3</td>
<td>38.1</td>
</tr>
<tr>
<td>Transformer (big)</td>
<td>28.4</td>
<td>41.8</td>
</tr>
</tbody>
</table>
Transformer

• Limitations of transformer: Quadratic computation cost
 • Linear for RNNs
 • Large cost for large sequence length, e.g., $L > 10^4$

• Follow-ups:
 • Large-scale training: transformer-XL; XL-net (‘20)
 • Projection tricks to $O(L)$: Linformer (‘20)
 • Math tricks to $O(L)$: Performer (‘20)
 • Sparse interactions: Big Bird (‘20)
 • Deeper transformers: DeepNet (‘22)
Transformer for Images

- Vision Transformer (’21)
 - Decompose an image to 16x16 patches and then apply transformer encoder
Transformer for Images

- Swin Transformer ('21)
 - Build hierarchical feature maps at different resolution
 - Self-attention only within each block
 - Shifted block partitions to encode information between blocks

Figure 2. An illustration of the *shifted window* approach for com-
CNN vs. RNN vs. Attention

Convolution

Recurrence

Self-Attention
Summary

• Language model & sequence to sequence model:
 • Fundamental ideas and methods for sequence modeling

• Attention mechanism
 • So far the most successful idea for sequence data in deep learning
 • A scale/order-invariant representation
 • Transformer: a fully attention-based architecture for sequence data
 • Transformer + Pretraining: the core idea in today’s NLP tasks

• LSTM is still useful in lightweight scenarios
Other architectures
Graph Neural Networks

Adjacency matrix $n \times n$

Feature matrix $n \times d$

A

X

Adjacency matrix $n \times n$

Feature matrix $n \times d$

PAP^T

PX

arbitrary ordering of nodes
Graph Neural Networks

permutation-equivariant

\[F(PX, PAP^T) = PF(X, A) \]

\(X \): input matrix

\(A \): adjacency matrix
Geometric Deep Learning

Perceptrons
Function regularity

CNNs
Translation

Group-CNNs
Translation+Rotation

DeepSets / Transformers
Permutation

GNNs
Permutation

Intrinsic CNNs
Local frame choice